
Understanding Features in
Superposition in Transformer

Language Models

Master Thesis

Kasper Munk Rasmussen

November 13, 2023

Advisors: Dr. Mor Geva, Google Research, Tel Aviv University and Prof. Mrinmaya

Sachan, ETH Zürich

Department of Computer Science, ETH Zürich

Abstract

It has been proposed that a hidden state space of dimensionality d in
a neural network can, in some cases, linearly represent and make use
of much more than d one-dimensional features in non-orthogonal one-
dimensional subspaces. This is described as superposition. However,
there has been limited work on investigating this in realistic pre-trained
Transformer language models [16]. Although the notion of a feature is
contested, we argue that the pattern of a token-bigram AB qualifies
as a feature. We study sets of bigrams with cardinality greater than
d, and their representation and usage in the spaces of hidden states of
pre-trained models, using linear probing and causal interventions.

We find evidence that there exist sets of bigram features with cardi-
nality larger than d, for which linear probes can identify the presence
of the features with good recall and precision. Building upon ideas
about the aggregate structure of the representations in superposition
in a space, we find that the distribution of feature vectors may be re-
lated to their importance for prediction, and that the bigram features
do not accord with what has, in recent work, been called isotropic su-
perposition.

Using causal interventions, we study how the linear representations
may be used by the model. Some bigrams have likely token continua-
tions, and causal investigations suggest a relationship between feature
directions and model predictions of such tokens. Linearly encoded in-
formation about a feature, erased from one hidden state, will in some
cases be available in later states. The effects of concept erasure on over-
all model performance vary greatly depending on the combination of
the bigram and the hidden state for which the erasure is performed. Al-
though the exact requirements for what qualifies as superposition may
have some ambiguity, we consider the results as evidence supporting
at least a weak formulation of superposition in Transformer language
models.

i

Contents

Contents iii

1 Introduction 1

2 Feature Types and Data 5

2.1 Defining Feature Types . 5
2.2 A Bigram Feature Type Set . 6

2.2.1 The Pile . 7
2.2.2 Feature Frequency . 8

2.3 Probing Data Sets for Bigram Feature Types 9
2.4 The Problem of Probing Data Sets 10

3 Feature Accessibility 13

3.1 Defining Feature Accessibility 13
3.1.1 The Problem of Positional Binding 15

3.2 Experiment . 16
3.2.1 Hypothesis . 16
3.2.2 Method . 16
3.2.3 Results and Takeaways 18
3.2.4 Further Analysis . 19

3.3 The Distribution of Feature Directions and Interference 21
3.3.1 Isotropy of Feature Directions 22
3.3.2 Feature Dimensionality 23
3.3.3 Determinants of Feature Dimensionality 25
3.3.4 Feature Dimensionality of Bigram Feature Vectors . . 26
3.3.5 Bigram Feature Importance 27
3.3.6 Hypothesis . 30
3.3.7 Method . 30
3.3.8 Result . 31

iii

Contents

4 Feature Usage 33

4.1 Methods . 35
4.1.1 V-information and Least Squares Concept Erasure . . 35
4.1.2 Causal Interventions . 36

4.2 Effect of Addition Interventions on Model Output 37
4.2.1 Method . 37
4.2.2 Hypothesis . 40
4.2.3 Experiment setup . 40
4.2.4 Results and Discussion 40

4.3 Effect of Erasure on Downstream Accessibility 42
4.3.1 Method . 44
4.3.2 Hypothesis . 45
4.3.3 Experiment Setup . 45
4.3.4 Results and Further Analysis 45

4.4 Effect of Directional Activation Intervention on Preliminary
Probabilities . 49
4.4.1 Method . 50
4.4.2 Hypothesis . 52
4.4.3 Results and Discussion 52

4.5 Effect of Erasure on General Model Performance 54
4.5.1 Conceptual Considerations 54
4.5.2 Experiment Setup . 55
4.5.3 Results . 55

4.6 Chapter Appendix: Defining the Validation Performance of a
Fitted LEACE Eraser . 57
4.6.1 Validation Performance as a Function of Training Set

Size . 58

5 Discussion and Conclusion 61

A GPT architecture 65

A.1 Embedding layer . 66
A.2 Residual streams . 66
A.3 Transformer block . 67
A.4 LayerNorm . 67
A.5 Multi-head Self Attention . 68
A.6 Multi-Layer Perceptron . 68
A.7 Unembedding Layer . 68
A.8 Hook Names . 69

B Intuitions about High-Dimensional Spaces and Feature Directions 71

B.1 Concentration of measure . 71
B.2 Packing dissimilar vectors . 73
B.3 How many features can be bound in a vector? 74

iv

Contents

C Reproducibility 77

D Note on Relation to Project Description 79

Bibliography 81

v

Chapter 1

Introduction

Transformer language models have shown impressive results in a wide vari-
ety of settings [39] [11] [36]. Despite their success, as is the case with many
other types of neural networks, the inner workings of pre-trained Trans-
former language models are not well understood [22] [15].

One line of work, mechanistic interpretability, aims to understand such mod-
els by decomposing the computation into smaller circuits that operate on
linearly encodings of features [35] [16] [18]. In [16], the authors investigate
simple non-Transformer models and propose the term ’superposition’: ”In
this paper, we use toy models — small ReLU networks trained on synthetic data
with sparse input features — to investigate how and when models represent more
features than they have dimensions. We call this phenomenon superposition.” They
propose the term superposition hypothesis for the idea that the fact that specif-
ically neuron activation spaces are not easily interpretable is due to such su-
perposition: ”Concretely, in the superposition hypothesis, features are represented
as almost-orthogonal directions in the vector space of neuron outputs. Since the
features are only almost-orthogonal, one feature activating looks like other features
slightly activating.” From this perspective, a preliminary goal of understand-
ing the inner workings of models in depth involves the identification of such
feature directions and showing how they are used in the computation of the
model.

The idea of superposition bears resemblance to ideas in the field of hyperdi-
mensional computing, which also relies on properties of high-dimensional
spaces [30]. In Appendix B, we perform simple simulations of some as-
pects of the behaviors of high-dimensional spaces, such as the behavior of
almost-orthogonal vectors. Understanding models in terms of linear repre-
sentations has been explored in many works, such as [24] and [41], but with
limited focus on the number of features represented.

1

1. Introduction

In [25], which is closely related to the work of this thesis1, the authors in-
vestigate the existence of a variety of features in the vector spaces of MLP
activations of pre-trained Transformer language models. Using a sparse
probing methodology, the work aims to find a limited set of neurons that
encode the feature. While it has been pointed out that the MLP entry-wise
activation functions give privilege to the standard basis of MLP activation
space and that there are therefore reasons for attempting to interpret indi-
vidual or small sets of neurons [15] [21] [8], the idea of a small subset is not
inherent to the idea of superposition. As the Transformer language mod-
els are residual networks, information is transmitted through the residual
stream. Since it is of interest to determine feature representations and their
usage downstream, we focus on representations in the residual stream and
consider MLPs mainly in terms of their effects on representations in the
residual stream.

The idea of superposition, as described in [16], focuses primarily on one-
dimensional or binary features that can be represented in one-dimensional
subspaces. Such subspaces can potentially be identified with linear probing.
Linear probing is a methodology widely used to interpret deep learning
models, in which a linear model is trained on the hidden states of a model
to predict a variable of interest. This provides insight into what kind of in-
formation is encoded in the hidden state [1] [3]. However, the aspect of how
this information is used by downstream circuitry is not directly addressed by
linear probing. Without additional techniques or modifications, it is primar-
ily a correlational methodology [41] [6] [5]. In [47], the authors introduce
a theory of usable information called predictive V-information, and linear
probing can be understood within this framework as investigating aspects
of linear information. Further work on concept scrubbing [6] considers the
possibility of intervening on hidden states in a principled way to remove the
information about a variable of interest that is accessible by a linear model.
In principle, linear probing, V-information, and concept scrubbing should al-
low one to describe more concretely what features are represented linearly
in superposition and aspects of how the model uses such information.

Concurrent work [48] [44] [45] proposes methods for investigating the causal-
ity and usage of features that are linearly encoded in one-dimensional sub-
spaces. Here, causal interventions are used to alter the hidden state in ways
that involve a candidate feature direction vector, such as adding a vector or
projecting out a specific direction.

While the term ’feature’ is widely used in many lines of work, there is no
direct consensus on the definition [12] [26], and original work on superpo-

1The work was published early in the process when we had already started focusing
on linear probing as an avenue, and the part of the work that focuses on bigram features
inspired us to consider large sets of bigrams to show superposition.

2

sition [16] [15] keeps the definition partly open, with an emphasis that fea-
tures should generally be understood as human-interpretable, though this
property is hard to define. [29] opts for a more general description of fea-
tures as functions of the input and defines additional properties on top of
such a general definition. [4] argues with [12] for representational pragmatism,
where features are relative to the goals of the researcher. This stands in con-
trast to some parts of [16] and [35], which more or less implicitly assume
that features can be inherent to a model and that mechanistic interpretabil-
ity involves identifying features which are, in some sense, real or natural.
In this sense, we might call such a perspective representational realism. [33]
proposes a theory explaining the neural scaling laws observed for large lan-
guage models, in which models learn specific quanta that correspond to pre-
diction rules. Such a theory is arguably related to representational realism
in its assertion that there are discrete patterns native to the data distribution
that are learned by the model. We draw on these different perspectives in
our definition and selection of features of interest.

Through the writings in [35], [16], [18], and [25], we get the impression that
the idea of superposition is best understood as being situated within a pack-
age of ideas. We will try to describe this package view while acknowledging
and emphasizing that most likely no researchers will claim to hold such a
view. However, we believe it is worth articulating as a reference for discus-
sions, and we might call it the ’strong view’: Large trained models have a
finite set of inherent native features, in the sense of representational realism.
These features are represented linearly in subspaces. This set of features
is very large because non-linear processing in the model allows for a way
of solving the problem that not all the subspaces can be mutually orthog-
onal. These subspaces not only contain information about the features but
are also native to the model in a sense that modules that act on these spaces
perform specific computations by accessing information in these subspaces
and write to new subspaces in a localized way. Such localized computations
form circuits in the model. It is these features that are in superposition
in a model. Most of the model’s ability to perform well can be explained
through reference to such features, their subspaces, and the circuits formed.
Computations performed by such circuits are, in some sense, symbolic, and
there might exist a mapping between a computer program that operates on
variables and control flow that has a form of causal fidelity to the computa-
tions performed by the model. Being in possession of such a mapping to a
program would be the supreme version of understanding a model.

The main goal of this work is to understand if and how superposition occurs
in the hidden spaces of realistic pre-trained Transformer language models.
Investigating the form of superposition implied by the strong view is diffi-
cult. We will investigate a weaker view, which we will describe in terms of
linear accessibility and the usage of large sets of features that are not nec-

3

1. Introduction

essarily native to the model. We will use methods of probing and causal
interventions, taking into account the many conceptual considerations we
have described so far. In short, we will argue for an approach to such an
investigation: The approach will be to train a large number of probes and
validate their performance on a distribution in which one is interested in
understanding the model’s behavior, and validate specific feature directions
as being causally involved in the model’s computation using causal inter-
ventions on hidden states.

In Chapter 2, we will further discuss the notion of features and aim to make
the language for features more precise for our use case. We will then argue
that bigram patterns fit both this definition of a feature and other consid-
erations for the meaning of a feature, and that they form a useful way for
studying the linear encoding of many features in the residual stream of
Transformer language models. We will also describe the probing data sets
we associate with such bigram features. In Chapter 3, we consider the cor-
relational aspect of probing under the terminology of feature accessibility.
We investigate the accessibility of bigram features in the residual stream of
a medium-sized Transformer language model and how many such bigram
features are accessible. We further look into how the feature vectors identi-
fied by the linear probes relate to each other in terms of cosine similarity and
perform an investigation based on the hypothesis that features that are more
”important” for good predictions should have feature vectors that are more
distant from the other feature vectors. In Chapter 4, we move on to consider
aspects of feature representations that are not only correlational and do so
by discussing what one might mean by saying that a model is using a fea-
ture and linear representations of such features. We conduct experiments
involving causal interventions on hidden states in order to assess whether
the feature directions for bigram features identified by linear probes are be-
ing used and get mixed results. We also conduct experiments using concept
scrubbing in order to investigate if such methods can be used to understand
how models use linear representations of features.

In Appendix A, we provide a description of the relevant parts of the ar-
chitecture of the Transformer language models that we are analyzing, and
the notation for the different hidden states that are being investigated and
intervened upon.

4

Chapter 2

Feature Types and Data

2.1 Defining Feature Types

[16] contains a section describing some aspects of what could be meant
by the term ’features,’ arguing that leaving it open might be useful. For
our use case, we will need language that allows us to talk more precisely
about what we mean. While [16] partly argues that features are generally
human-interpretable, even if they might not remain so for very advanced
models, the human-interpretable aspect of features is obviously very diffi-
cult to make precise. However, the bigram features we work with are ar-
guably mostly considered human-interpretable. We follow [29] in thinking
of features as deterministic functions of the data and believe that it could be
useful to let the human-interpretable aspect be something built on top of a
more generic definition like the one we use. As part of an attempt to talk
clearly about features, we also use the type-token distinction [37] in this con-
text, which allows us to distinguish it from the general word ’feature’ with
its various conceptions. Thus, in the following, ’feature type’ is supposed
to be understood as just a ’feature,’ the idea being that specific inputs will
contain specific instances of this general type.

• Let X be a set that forms the domain of the input data. In our case, this
would be the set of possible sequences for which a language model is
then to predict the next token.

• A feature type set Z on X is a set of feature types.

• A feature type z 2 Z is a function z : X ! Sz mapping input x to an
element in the feature type domain Sz (a set) of the feature type z.

• A feature type z 2 Z is binary if its feature type domain is Sz = 0, 1.

• A feature type set Z is binary if all feature types z 2 Z are binary
feature types.

5

2. Feature Types and Data

2.2 A Bigram Feature Type Set

We will consider a specific binary feature type set corresponding to bigrams
that are pairs of tokens.

As mentioned, it might be desirable to understand models as representing
features that are ’interpretable to humans’. It is not clear what exactly this
would mean. For a binary feature type z, this could mean that when pre-
sented with examples xi, a human being could learn to perform well as a
classifier according to target labels z(xi) in such a way that the human’s clas-
sification performance is good according to a certain metric. Bigrams are
patterns that can easily be detected by a human, though depending on the
tokenizer, some bigrams might be ambiguous,1 but on the other hand, not
all bigrams are intuitively thought of as a ’natural’ pattern: (for example) is
a pattern that many humans would view as more ’natural’ than the bigram
(., The), even if this latter bigram is just as common.

Another question about the feature type set is what we in the introduction
called representational realism: It could be argued that with the terminology
we have now, one is completely free to select any feature type set one wishes,
and then study how the processing within the model relates to the feature
types. Some may argue instead that in some way or another, some feature
type sets are more ’native’, ’natural’, or ’inherent’ to the model, so that there
is something that would resemble the ’true feature type set’ or at least a
spectrum of how true this feature type set is.

If models have native features, we believe the following simple consideration
to be important: For a model which is optimized to minimize cross-entropy
on the next-token prediction task, it is beneficial to consider a feature type
set with feature types that relate to patterns that are relevant for next-token
prediction. In this way, if there is a native feature type set, it seems reason-
able to think that such feature types are related to prediction. While many
complex patterns in text might be relevant for next-token prediction, the
simplest n-gram statistics of the training data set contain patterns which are
relevant for next-token prediction.

This last argument for viewing bigrams as features is related to the proposal
in [33] that models learn quanta, which are prediction rules that have a
certain probability of being useful for next-token prediction, and that power-
law neural scaling might be linked to a power-law distribution of the proba-
bilities of these quanta. As shown in Section 2.2.2 below, bigrams also follow
such a power-law and can, in many cases, be linked to a kind of prediction
rule given the trigram statistics of data. An argument against this, how-

1For example, byte pair encoding can give rise to tokens consisting of different numbers
of whitespaces, in which case it would require more work for a human to decide.

6

2.2. A Bigram Feature Type Set

ever, is that trigram statistics do not form deterministic quanta as the theory
mostly implies.

Focusing on n-grams has additional benefits that relate to the above con-
cerns: Both the presence and the location of a specific n-gram in a sequence
of tokens can be easily determined algorithmically and by humans. Thus,
these considerations, in conjunction with the fact that interpreting models is
generally difficult, lead us to focus on some of the simplest patterns we can
imagine: n-grams and their statistics in the dataset. Denoting the vocabulary
set by V , an n-gram is a contiguous sequence of n tokens (v1, ..., vn) 2 V

n.
When n = 1, we call it a unigram; when n = 2, we call it a bigram. It is
clear that for predicting the next token, the previous word is in many cases
relevant, just as the previous two words are relevant, and we will focus on
bigrams. For our vocabulary V with a vocabulary size of V ⇡ 50, 000, the
number of possible bigrams is |V

2
| = 2.5 billion.

Given our focus on bigrams, we will use the symbol k 2 V
2 to refer to a

bigram in the abstract as the tuple of two tokens. To avoid confusion, we
will not use the type-token distinction for bigrams and instead refer to a
specific instance of a bigram in a sequence of tokens as an ’instance of a
bigram’ [37].

We now have two main options when defining the feature type set. Given an
input sequence x, we can consider either whether the bigram occurs at some
place in the sequence or if it occurs as the last two tokens in the sequence.
We take the latter approach, and thus for a bigram k, we define the binary
feature type such that given a sequence x = (x1, ..., xT�1, xT) 2 V

T of length
T, we have

zk(x) =

(
1 if (xT�1, xT) = k,
0 otherwise.

meaning it is 1 if the sequence ends with the bigram. In principle, our
feature type set is then Z = {zk|k 2 V

2
}, though in practice, we can only

consider a subset.

2.2.1 The Pile

The Pile [19] is a large webscale text dataset used for training language mod-
els, including all the Pythia models considered in this work. The datset
includes news articles, computer code, academic articles, forum discussions
and more. In this work we will use a subset of The Pile: T322K is approx-
imately 322 thousand sequences of 600 tokens from The Pile Train selected
from a randomly chosen part of The Pile Train. Documents from the set
were only used if they were at least 600 tokens long and in this case only
the initial 600 tokens were used. T10K and T77K refers to respectively 10
thousand and 77 thousand sequences of 600 tokens from sequences from

7

2. Feature Types and Data

The Pile Validation Set that were capped in the same way. The motivation
behind having sequences of such length is that it makes experiments easy
by storing the data sets as a matrix.

The fact that the data used is limited in size as well as the restriction to
the beginning of sequences of certain length can in some sense introduce
bias into both probe training and evaluations. Futhermore [9] argues for
using multiple varied data sets when interpreting models, showing that one
will otherwise fall under an ”interpretability illusion” as to how a direction
encodes a feature.

As with the discussion about the notion of a feature, some aspects apart from
sampling error, are here partly conceptual. It might be argued that unless
one subscribes to a very strong form of representational realism, the aim of
understanding a model will mostly be bound to a specific data distribution,
in this case the distribution induced by selecting sequences from The Pile
as described. We call this distribution the interpretation distribution. In our
case, apart the biases mentioned, the interpretation distribution agrees with
the training distribution and as argued in the previous section this has some
advantages for the representational realism concern, but in other cases one
could imagine that the interpretation distribution and training distribution
do not agree.

2.2.2 Feature Frequency

For a binary feature type z, it is natural to consider the associated feature
frequency: Letting X ⇠ PX be a random input from the input domain, with
distribution according to the interpretation distribution, then z(X) is then a
random variable and the feature frequency for z is P(z(X) = 1) = EPX [z(X)].

Since a model given an input sequence x gives predictions for the next-token
for each prefix of the sequence (see Appendix A.7), it seems reasonable to
consider PX to be the empirical distribution induced by the set of all sub-
sequences of the sequences in our dataset, which would also be helpful be-
cause we can then estimate the feature frequency for each bigram by count-
ing occurences of bigrams on a sample of the interpretation distribution, in
our case we use T77K.

In Figure 2.1 we show rank-frequency plot for unigram and bigrams in T77K.
Here the x-axis denotes that bigrams are sorted according to the number
of occurences in the data in descending order. The most frequent bigrams
obviously has higher probability of occuring and as we move to less and less
frequent bigrams, the probability falls in a way that can be approximated
as a power-law where the frequency p(k) of a bigram k with rank rk is
approximated as p(k) µ r�a, which forms a straight line on a log-log plot.

8

2.3. Probing Data Sets for Bigram Feature Types

This means that most bigram feature types are very rare which puts limi-
tations on our ability to investigate such feature types because of the large
amount of data needed to find occurrences. However this problem is not
unique to our bigram feature type set. Especially for stronger forms of rep-
resentational realism this is also a concern given that many patterns one
might consider meaningful features are bound to be very infrequent [25]
[16].

(a) Unigrams (b) Bigrams

Figure 2.1: Rank-frequency plots for occurrence frequencies for bigrams and unigrams in The

Pile (T77K)

2.3 Probing Data Sets for Bigram Feature Types

In the investigations to follow, we will associate with a bigram k = (v1, v2) a
data set Sk of contiguous subsequences from T322K called the probing dataset
for k. The construction follows [25], which considers a dozen bigrams as part
of a more general investigation of various features in Transformer models.
The probing data set for a bigram has a structure and some properties:

• Training probing dataset is the collection of 3 set Strain
pos , Strain

1neg , Strain
2neg ⇢

V
T of sequences where all sequences in each set is of length T = 22.

– All sequences in the training probing data set exists as contiguous
subsequences in T322K.

– For a sequence x in the training probing dataset there is a ground
truth next-token for the sequence, which is the token found im-
mediately after the sequence in T77K from which the sequence is
derived.

– All sequences x 2 Strain
pos end with the bigram k, that is, the last two

tokens of x are v1 and then v2. In other words 8x 2 Strain
pos .zk(x) =

9

2. Feature Types and Data

1. This set is called the positive training sequences for the bigram k,
an element is a ”positive sequence”.

– All sequences x 2 Strain
1neg have the property that the second-last

token xT�1 = v1 and xT 6= v2. That is, the ending of the sequence
agrees only with the first token in k. This is called the 1-negative
training sequences for k.

– All sequences x 2 Strain
2neg have the property: xT�1 6= v1 and xT = v2.

That is, the ending of the sequence agrees only with the second
token in k. This is called the 2-negative training sequences for k.

– The sets have sizes |Strain
pos | = 800, |Strain

1neg | = 1600, |Strain
2neg | = 1600.

• The validation probing dataset Sval
pos, Sval

1neg, Sval
2neg ⇢ V

T are 3 sets with
the same properties, except that

– |Strain
pos | = 100, |Strain

1neg | = 200, |Strain
2neg | = 200

• The sequences in the probing dataset are derived from distinct loca-
tions in T322K.

• It is worth emphasizing that Sk is off-distribution in the sense that
sequences in Sk do not represent uniformly randomly sampled se-
quences or subsequences from to T322K or The Pile in general. We
emphasize this because it becomes relevant below.

Since some bigrams are very infrequent, it is not possible to construct train-
ing probing data sets efficiently for all bigrams, so we consider bigrams that
are more frequent.

The way the probing dataset Sk is used, is that wrt. a model M such as
Pythia-410m, we are interested in how M processes sequences in Sk. For a
sequence x, we will primarily be interested in the residual stream rs

T(x) at
the last position T at some depth s (see hidden space notation in A.8). Thus
we denote

X
train
pos (rs

T) = {rs
T(x)|x 2 Strain

pos }

as the positives at depth s (where position T is assumed), define the other
sets for validation, 1-negatives and 2-negatives, etc. similarly.

2.4 The Problem of Probing Data Sets

While we can easily determine whether or not a specific sequence ends with
a bigram, and there is therefore no label-noise in the probing datasets, a
major problem remains: Because for all bigram feature types the feature
frequency is very low (which is the case for many other features one can
consider), in most cases we would be required to construct such an off-
distribution probing dataset as described above. The way such a probing

10

2.4. The Problem of Probing Data Sets

dataset is constructed introduces a kind of bias or noise in downstream anal-
yses of the associated bigram feature type: While the positives are always
positives and can be said to be an unbiased sample of positives that are dis-
tributed as P(X|z(X) = 1), the negatives could be selected in many other
ways. This will impact the resulting model parameters of the probe classifier
and the identified feature direction derived from these model parameters.

It seems that one should therefore distinguish between, on one hand, the bi-
gram feature type for which the ideal probing dataset is simply a very large
on-distribution sample, and on the other hand, the feature that is ”implic-
itly” being probed for by the details of the probing dataset construction. The
problem is, however, that such a feature is not describable with our termi-
nology for feature types: The function that determines whether a sequence
ends with a bigram k is the same as the function that determines whether
a sequence ends with bigram k and does not end with the kinds of bigrams
that our 1-negatives and 2-negatives end with.”

11

Chapter 3

Feature Accessibility

As we see it, the basic hypothesis is that a large number of one-dimensional
feature types are represented in high-dimensional spaces using one-dimensional
subspaces, and that the model performs computation by accessing this infor-
mation and making use of it. In this chapter, we will investigate a necessary
condition for such access, namely accessibility. Independently of whether
a part of the model in fact makes use of the feature by accessing the avail-
able information in a space to perform some computation, one can discuss
whether the feature type would, in principle, be accessible. We will try to
make precise what is meant by accessibility and use it to formulate and
investigate a narrower version of the hypothesis that features are in super-
position in Transformer language model hidden spaces. This investigates
whether we can have a large number of feature types be linearly accessible.
We do this by training and evaluating linear classifiers. At the end of the
chapter, we will then consider the weight parameters of the linear classifiers
as feature directions to draw connections to previous work about superposi-
tion discussed in [16].

3.1 Defining Feature Accessibility

For an data domain X ⇥ Y , a binary feature type set Z on X , a neural net-
work M : X ! Y , and interpretation distribution PX,Y on which we are
aiming to understands the model’s behavior, we have the following defini-
tions.

• If M is a residual neural network of S residual blocks, processing the
input X ⇠ PX, with residual stream space H, we say that the residual
stream of hidden states evolves like

h0(X) = fembed(X) 2 H

hs+1(X) = hs(X) + fs(hs(X)) 2 H

13

3. Feature Accessibility

for s 2 {1, ..., S} where s is called the depth and fs : H! H is the block
at depth s, and fembed : X ! H is the embedding layer.1

• By the term accessibility we are aiming to talk about what information
is in principle available in the representations. Thus in a more general
context than the restriction to linear representations we might say that
for a feature type z 2 Z the ”informational feature accessibility” at
depth s, is the mutual information I(hS(X); z(X)) under the marginal
PX.

• In the context of the linear representations of binary features, if H =
Rd, for a family V of linear models {hq(x) = w

T
x + b|q = (w, b) 2

Rd
⇥R} and loss function L : H ⇥ {0, 1} ! [0, •), we might define

the linear L-accessibility of z at depth s as the Bayes risk

a(z, s, L) = min
h2V

EPX [L(z(X), h(hs(X)))]

• We would then approximate the linear L-accesibility of z at depth s
using empirical risk minimization, by training a linear classifier hprobe
called a (binary) linear probe on a probing data set (that may or may not
be distributed as PX,Y) and evaluating the empirical risk:

â(z, s, L) = R̂(hprobe) =
1

|Dval |
Â

(xi ,yi)2Dval

L(z(xi), hprobe(zi))

for a validation set Dval that should generally be an unbiased sample
from the interpretation distribution.

• In a restricted sense a necessary condition for superposition of feature
types in a hidden state hs(X) is that there is a large number of feature
types with good linear L-accessibility. We might say that a hidden state
hs(X) 2 Rd has linear L-accessibility #-superposition wrt. a feature
type set Z if there exists a subset Z

0
✓ Z such that both |Z

0
| > d

and for all z0 2 Z
0 the a(z0, s, L) < #. If d0 was the greatest cardinality

among sets for which this is the case, the ratio d0
d might also be an

interesting characterisation of the degree of total linear L-accessibility
#-superposition.

• In practice however we might want not use a loss function L but in-
stead evaluate the classifier on a performance metric such as F1 or
AUC-PR that are not strictly loss function. In this case we might
for example say that a hidden state hs(X) 2 Rd has linear AUC-PR-
accessibility d-superposition wrt. a feature type set Z if there exists

1Most of the ideas presented should also apply for non-residual networks with hidden
states hi(X) 2 Hi where i is some form of index of the specific hidden state in the network
one is interested in.

14

3.1. Defining Feature Accessibility

a subset Z 0 ✓ Z such that both |Z
0
| > d and for all z0 2 Z

0 the the
AUC-PR validation performance is at least d.

• There is something unelegant about letting the accessibility be de-
fined wrt an arbitrary loss function or classification performance met-
ric. In 4.1.1 we describe V-information as introduced by [47]. We
could define the linear accessibility of z at depth s as the V-information
IV (hs(X) ! z(X)), where V is still the class of linear classifiers, and
believe it could be an interesting direction for future work to investi-
gate if it is conceptually/theoretically and experimentally possible to
quantify the amount V-information in a hidden state.

3.1.1 The Problem of Positional Binding

With respect to the previous section, it would be most intuitive to think of the
residual network as operating on simple hidden state spaces Rd. However,
for residual models such as CNN residual networks operating on images,
the residual space often comprises elements of shape W ⇥ H ⇥ d, where W
and H represent the width and height (or downsampled width and height),
forming a grid of d-dimensional representations at each position. Likewise,
as described in Section A.2, in our GPT models, we in principle have a resid-
ual space of shape T ⇥ d, where T is the number of tokens in the sequence.
In both cases, representations are ’bound’ to a position, either token position
or position in the image. In both cases, there is usually some part of the ar-
chitecture that facilitates the flow of information between representations at
different positions: in CNNs, the convolutional layers, and in Transformer
models, the MSA modules. This gives rise to a problem when trying to
interpret and understand models in terms of the representations at a given
position, which we call ’the problem of positional binding’.

Many feature types one might care about are not necessarily of a very local
character. For properties such as ’the sentence is sarcastic’ or ’the sentence
is written in French’, the sentence might have specific tokens that are more
related to the property than others, but it is not obvious how such features
should relate to the representations at specific positions. [44] investigates
representations of sentiment and finds information about sentiment to be
’summarized’ at positions related to stopwords and punctuation. [32] finds
that the information about the city of the Eiffel Tower is primarily contained
in the residual stream for the Tower and is only transferred to later posi-
tions when this information is used for predicting Paris. For a bigram AB,
the information about the identity of the bigram might be accessible in the
residual stream for B, but even if it was not, the information would, in most
cases, be accessible in a subspace of the space associated with the residual
stream for A and B considered together R2⇥d. The problem of positional

15

3. Feature Accessibility

binding should thus be considered when drawing conclusions, and we will
consider it more later.

3.2 Experiment

We wish to conduct an experiment to assess the linear accessibility super-
position with respect to the bigram feature type set in the residual stream
for the position corresponding to B in a bigram AB at low depths. We will
try to do so by training thousands of probes for combinations of bigrams
and depths and evaluate their performance on T77K. This is done on the
Pythia-410m model [7].

3.2.1 Hypothesis

Informal hypothesis: Residual stream spaces linearly represent many more
bigrams than there are dimensions.

Specific hypothesis: For the early residual stream hidden states rs
T(X), s = 1

and s = 2 of the Pythia-410m and Pythia-70m models, there exists sets of bi-
gram feature types zk larger than the dimensionality of rs

T(X) for which the
linear accessibility is good. We consider linear F1-accessibility 0.9 to be good.
In other words we hypothesize linear F1-accessibility 0.9-superposition in
early residual streams at depth s = 1 and s = 2.

3.2.2 Method

Linear probing is a common technique in interpretability and beyond [3].
While people can use probing for various reasons, in the context of this
chapter linear probing is a methodology for assessing linear accessibility: To inves-
tigate the linear L-accessibility of a binary feature type z in a hidden state
hs(X) we train a linear model on a probing data set and use the acquired
probe to evaluate the loss L on a suitable validation set.

The problem of positional binding means that we have to make a choice as
to how we want to investigate the accessibility of a bigram feature type. We
will be looking at the residual stream at the last position.

For the bigram feature type zk we approximate the linear F1-accessibility of
zk by training a logistic regression classifier. A logistic regression classifier
is a function Cq(x) : Rd

! (0, 1) with parameters q = (w, b) 2 Rd
⇥R st

Cq(x) = s(w • x + b)

where s is the sigmoid function. By treating Cq(x) as inducing a conditional
distribution q(y|x)2, the logistic regression classifier is trained by minimiz-

2q(y = 1|x) = Cq(x) and q(y = 0|x) = 1� Cq(x)

16

3.2. Experiment

ing the cross-entropy E(x,y)⇠pdata
[� log q(y|x)] on the empirical distribution

pdata induced by the training data set using some optimization technique.3

For a bigram feature type zk, for a depth s, we train a logistic regression clas-
sifier (using sklearn default settings) by constructing a binary classification
training dataset where the input vectors are the vectors from
X

train
pos (rs

T),X
train
1neg (r

s
T),X

train
2neg (r

s
T) (see Section 2.3) and the the positives have

label 1 and both 1-negatives and 2-negatives have label 0. We construct a
binary classification validation set accordingly. We call the trained logistic
regression classifier Cs

k : Rd
! (0, 1) a linear probe of zk as depth s, and the

weight vector w
s
k 2 Rd associated with the linear probe we call the probing

vector and will later treat it as a ”candidate” for the feature direction associated
with zk at depth s.

While we have an associated validation set X
val(rs

T) we have to be aware
that as mentioned, this data set is off-distribution wrt. T77K. Thus the classi-
fication metrics of Cs

k evaluated on X
val(rs

T) do not form the full story of the
performance of the probe: As mentioned, most bigram feature types zk have
very low feature frequency, while in their associated probing validation set
the positives constitute 1/5 of the sequences. This means that the probing
validation data set can be used to give us a good idea about the sensitivity,
i.e. P(Cs

k(x) = 1|zk(x) = 1), but other classification metrics can be biased.
Consider precision P(zk(x) = 1|Cs

k(x) = 1), here if the feature frequency is
very low, even if the specificity is very low, the total amount of false positives
could dominate the number of true positives.

Therefore consider a set Sod of 200 sequences of length T = 600 from T10K
and evaluate Cs

k based on the set of 120, 000 vectors X
s
od = {rs

t(x)|x 2 Sod, t 2
[T]} and associated labels: For an vector rs

t(x) for some x and t, the associ-
ated label will be 1 if the sequence xt ends with the bigram k, that is if
zk(xt) = 1. In this way we are trying to estimate how the probes perform
on-distribution wrt. the interpretation distribution.

We wish to determine if indeed the space associated with rs
T for some depth

s is such that many bigram feature types can have good classification, specif-
ically whether there exists a subset Z

0
✓ Z such both |Z

0
| > d and for

all z0 2 Z
0 the F1 and AUC-PR is good. We consider F1 and AUC-PR be-

cause these metrics concern sensitivity and precision. As we will discuss
below specificity is of limited interest to us because of the strong class im-
balance arising from the low feature frequencies. We will then evaluate on-
distribution F1 and AUC-PR for each bigram feature type and order them in
decreasing order on a ”rank-performance” curve, that allows us to highlight
the relationship between the packing and the performance. For a metric
such as AUC-PR, the bigram feature whose AUC-PR performance rank is

3We use standard sklearn settings where the optimizer is LBFGS

17

3. Feature Accessibility

d + 1, consider its AUC-PR performance d. This probe and its performance
thus defines a point on the rank-performance curve where we can say that
we have d + 1 features whose AUC-PR is at least d in a d-dimensional space.
This will give us an evaluation of the degree to which we can say features
are packed in the space.

3.2.3 Results and Takeaways

(a) AUC-PR (b) F1

Figure 3.1: Rank-performance curves for probes trained on Pythia-410m

In Figure 3.1 we show the before mentioned ”rank-performance” for our
probes for depths s 2 {1, 2, 3} and with AUC-PR and F1. Consider first
Figure 3.1a. The x-axis is the rank of the probe associated with the specific
depth, this means that for example x = 1700 might not correspond to the
same bigram for s = 1 and s = 2 because the rankings of different probes
might vary internally between s = 1 and s = 2. The way we interpret these
plots is to say that for the bigrams and associated probes we consider, by
looking at the x-axis x = d + 1 = 1025, for s = 2 we can select a set of
d + 1 bigrams where the probe for each will be at least 1, while for s = 1
we can select at set of d + 1 bigrams where the probe for each will be at
least 0.958. Similarly for F1-score in Figure 3.1b, for sets d + 1 bigrams,
we get at least F1 of 0.94 for s = 2 and F1 of 0.83 for s = 1. Since our
specific hypothesis formulated in 3.2.1 was that of linear F1-accessibility 0.9-
superposition for both s = 1 and s = 2 we cannot confirm the specific
hypothesis from this available data. However, we will discuss reasons why
we believe the hypothesis to be true even if the experiment does not confirm
it.

There are limitations of the assessments of AUC-PR and F1 because even
though we 120, 000 tokens, for some k and associated Cs

k the number of
tokens that are not true-negatives can be quite small. This especially hold
for bigram feature types with very low feature frequencies. This means that

18

3.2. Experiment

more validation might be needed to evaluate the performance of specific
probes but that a general conclusion that the space can indeed allow for
many well-performing probes does hold.

We note that the shape of such a ”rank-performance” curve also greatly
depends on the number of features we are training probes for. For the
bigrams we trained probes for we did not find a significant relationship
between the performance and the feature frequency of the AUC-PR and or
F1 score. This means that for a selected threshold d we cannot, because
of limited compute resources, assess how many bigram feature types as a
number d0 have an AUC-PR that is at least d and thereby compute the ratio d0

d
which would have been an interesting measure of the the degree of packing
of bigram feature types in the d-dimensional space. Furthermore, as will be
described below even for the bigrams considered the performance shown in
the plots are most likely to be viewed more as a lower bound.

While binary classification for imbalanced data sets is not uncommon in ma-
chine learning and therefore has a rich literature [43], the literature on how
neural networks, particularly language models, deal with representing fea-
tures with very low frequency seems to be understudied and could benefit
from both theoretical and empirical investigations. Especially, the question
of how to think about the relationship between recall and precision is impor-
tant. In [25], the authors note that for the case where they identify sets of
MLP neurons for a feature, ”Low precision and high recall indicates either that
the selected neurons are highly polysemantic or the model represents a more general
feature than is being probed for. High precision and low recall of the probing clas-
sifier may indicate that the identified submodule represents a more specific feature
than the feature being probed for”. As also noted by [25], the trade-off between
recall and precision depends on the threshold of the classifier, which is why
we also consider AUC-PR. Exactly how a model uses the linear information
with its associated recall-precision trade-off might be complex and hard to
discern. This is why applying V-information [47] might make more sense
than using F1 or AUC-PR, as other classification metrics implicitly assume
that models make discrete classifications of features instead of operating
with whatever signal is available.

In the case where we associate the classifier Cs
k and its associated weight

vector w
s
k with a feature direction that is intrinsic to the model, which will be

discussed in later sections, some of these consideration still apply.

3.2.4 Further Analysis

For s = 1 the bigram (to, a) has a AUC-PR of 0.07 and all 1226 positives
in the on-distribution sample are incorrectly classified as negatives with the
standard threshold. However, using an alternative approach to the construc-
tion of the probing dataset, which we will now describe, we can raise the

19

3. Feature Accessibility

AUC-PR from 0.07 to 0.996 and the F1 from 0 to 0.98. This suggests that the
degree of packing of feature directions in the hidden spaces is greater than
what is suggested by the rank-performance curves discussed.

Half-Adversarial Probing Data Sets

The way we try to get better probes is by synthetic alterations based on an
idea of embedding-similar bigrams.

For a specific Transformer language model, two bigrams (a1, b1), (a1, b2) 2
V

2 are embedding-similar of Type A or Type B iff:

• Type A embedding-similar: a1 = a1 and sim(fembed(b1), fembed(b2)) is
”high”. If ”high” needs to be formalized it has to take into account
the fact that fembed(b1) might be in the k-neighborhood of k nearest
neighbours4 of fembed(b2) but not the other way around, and that this
is most likely very common. Thus, if we want the binary relation to
be commutative, we can define ”high” as meaning that at least one is
within the k-neighborhood of the other for a suitable k.

• Type B embedding-similar: b1 = b2 and sim(fembed(a1), fembed(a2)) is
”high” with same caveats.

Consider a bigram k = (a, b). We start by having the normal probing dataset
Sk. For each 1-negative sequence with probability q we make a change: A 1-
negative is a sequence that ends with (a, b0) where b0 6= b. With probability
q we choose to make a change to this sequence there b0 is replaced with
b00 where b00 2 V is drawn uniformly at random from the k-neighborhood
of b. That is, b00 will be a type whose embedding is quite similar to the
embedding of b. In this way (a, b00) will be embedding-similar to (a, b).
Likewise, for 2-negative sequences that end with (a0, b) where a0 6= a, we
make a substitution where a0 is replaced with one of the k types in V whose
embedding is most similar to the embedding of a, and this replacement is
done with probability q. The Bernoulli random variables X1, ..., X|S1neg|+|S2neg|

corresponding to the choice of making a replacement for each sequence are
sampled i.i.d from Ber(q).

The original choice of how to select the negative sequences for the probing
datasets was already a design choice aimed at creating good probes, and so
may have its advantages and disadvantages. For the purpose of assessing
the linear accessibility, the design choice should ultimately be judged by its
ability to make the on-distribution behavior of the probes good. In principle,
what constitutes a good design choice could vary from bigram to bigram.

4By k-neighborhood of fembed(b1) we mean the set S of vectors fembed(vi) for i 2 [k] such
that there exists no other vj 62 S with type embedding fembed(vj) such that there exists an
s 2 [k] such that sim(fembed(vj), fembed(b1)) � sim(fembed(vs), fembed(b1))

20

3.3. The Distribution of Feature Directions and Interference

This seems to be the case: Even though for the bigram (to, a) described
above, we get an improvement using half-adversarial with k = 20, q = 0.2,
and s = 1, there are also cases where we get much worse performance than
using the standard probing datasets.

On precision for very rare features

Using the half-adversarial probing, one can train a probe for a quite rare
bigram. However, when evaluated on-distribution, there may not be any
positives. In this case, one can still get an idea about the precision by eval-
uating the sensitivity on the probing validation set (non-adversarial) and
looking at the on-distribution false positives.

Consider the peculiar bigram (this,->). Using half-adversarial probing we
can get perfect sensitivity for for example s = 1. Its empirical frequency is
approximately 4.8 · 10�5. We use approximately 5 · 105 tokens for evaluation
and get no false positives. Thus it seems reasonable to say expect that this
probe has a reasonably good precision even if we do not have an exact
approximation.

3.3 The Distribution of Feature Directions and Inter-
ference

In the previous sections we were interested in the linear accessibility of bi-
gram feature types and used linear classifiers to assess this linear accessibil-
ity. We were not directly interested in which exact subspaces encoded the
information. There is a certain sense in which a logistic regression classifier
Cs

k associated with a bigram k in a specific residual stream depth s has an
associated feature direction, namely the weight vector w

s
k 2 Rd. Rewriting

the weight vector as a scalar multiplied by the L2-normalized weight vector
w

s
k = cs

ku
s
k and the input

Cq(x) = s(cs
ku

s
k • x + bs

k)

we see that the classifier is ultimately dependent on the cosine-similarity
between the input vector x and the ”feature direction” u

s
k.

Given that all the feature vectors cannot be orthogonal, ’activation’ of one
feature by having a high dot-product with the feature direction can result
in the activation of unrelated features, which would ideally have orthogonal
feature directions but do not because of superposition (see Appendix B.3).
In [16], a notion of ’feature dimensionality’ is introduced that tries to quan-
tify some aspects of such ’interference.’ The paper primarily investigates
how sparsity (what we call feature frequency) influences feature dimension-
ality. As we will discuss, two feature types with the same feature frequency

21

3. Feature Accessibility

could have different levels of importance to prediction, and we hypothesize
that this importance is associated with the feature having a larger part of
the representation space allocated to it, in the sense of higher feature dimen-
sionality.

It is not clear exactly how to think about and quantify this importance, and
we will present an idea for quantifying it. Furthermore, there are obstacles to
applying the concept of feature dimensionality to our use case. We will try to
address these obstacles and test the hypothesis that feature dimensionality
is related to importance. Let us first, however, focus on a related but simpler
aspect of how such feature directions are distributed.

3.3.1 Isotropy of Feature Directions

A general idea underlying the proposal of superposition in [16] is that su-
perposition can be viewed as a model ”simulating a larger network” with
spaces of higher dimensionality where directions would be orthogonal. This
leads to the view of feature directions as being distributed as widely as pos-
sible, so that, for example, 5 feature directions in 2-dimensional space would
form a pentagon, or the feature directions are ”isotropically distributed”.

By computing the pairwise cosine similarities between bigram feature vec-
tors belonging to s = 2, we find that the mean and median cosine simi-
larity is quite close to 0. This suggests that the feature vectors are quite
”spread out”, and we find a relatively heavy positive tail where feature vec-
tors are quite close to each other. These are in almost all cases what we call
embedding-similar bigrams in 3.2.4.

(a) depth s = 1 (b) depth s = 3

Figure 3.2: Cosine-similarities between pairs of bigram feature vectors for Pythia-410m in resid-

ual streams at depth s = 1 and s = 3

Given the idea that the first MSA module would transfer token embedding
vectors using a linear OV-circuit [18] and the general idea of embedding-

22

3.3. The Distribution of Feature Directions and Interference

similar bigrams, the fact that feature vectors group together is perhaps not
surprising. We think it is worth reflecting on whether isotropy is an inher-
ent part of the idea of superposition. On the view that it is, one could either
view the observations of the non-isotropic distributions of these bigram fea-
ture vectors as providing evidence against the theory, or one could argue
in various ways that either this is why bigrams themselves should not be
considered features, or that the feature directions used are too noisy due to
details in probing. Another argument that it is not problematic is that the
isotropy is primarily studied and observed in [16] in a context where the
importance is the same for all bigram features.

In concurrent work [10] that uses ”dictionary learning” to identify feature
directions in one-layer Transformer language models, the identified feature
directions are not isotropically distributed but form rough clusters, and it is
said that this could be viewed as ”anisotropic superposition”. Anisotropy,
especially when there are clusters, would imply that feature spaces are not
”almost orthogonal”, so the question seems to be: Is almost-orthogonality
central to the idea of superposition or is it merely a narrower version of the
idea?

These observations and reflections, together with the discussion about the
applicability of discrete classification metrics in 3.2.3, suggest to us that a
theory of superposition based on representational realism may not be falsi-
fiable. It does not seem that there is any direct way of determining whether
a group of feature directions for a proposed set of feature types should be
viewed as a simple feature, or what [10] calls a feature manifold, and that the
core of the problem is the ill-defined nature of many unsupervised learning
problems, including clustering. It is hard to see how one can falsify a theory
of true native feature directions if the computational problem of identifying
them might be ill-defined. We emphasize that these are only reflections and
are not meant as definite conclusions, and also should not have implications
for less realist views like forms of representational pragmatism that acknowl-
edge that viewing spaces as having many features in linear subspaces and
understanding accessibility, usage, and more using linear methods can be
useful in many contexts.

3.3.2 Feature Dimensionality

In a d-dimensional space d one-dimensional feature types could have their
own associated basis vector as feature directions. This would make the dot-
product and cosine-similarity between feature directions 0. In other words,
given a total ”capacity” of d dimensions, each feature type gets a capacity of
1 dimension. As discussed, this is not so when there are more feature types
and associated feature directions than dimensions, and [16] introduced a
concept of feature dimensionality where the intuition is supposed to be that

23

3. Feature Accessibility

a specific degree of the total capacity is allocated to the associated feature
type.

Given a set of feature vectors S = w1, ..., wn that are not necessarily unit
vectors, the feature dimensionality for wi is defined as

Di =
||wi||

2

Âj(ŵT
i wj)2

where ŵi is wi normalized.

The idea is that if there are many wj that project onto wi the more wi will
have to share its subspace with others.

One aspect that is not discussed in detail in [16] is the initial assumption
of orthogonality and near-orthogonality. While [16] investigates correlated
features and how they could influence feature dimensionalities, there could
be other reasons why features should not ideally be represented as orthogo-
nally as possible, even if they are not correlated, such as the ease of down-
stream accessibility and use. Bigram feature types are, by construction, non-
positively correlated because only one of them can be present at the same
time. However, as seen, for example, in the concept of embedding-similarity,
they are still not necessarily as orthogonal as possible. Concurrent work [10]
considers making a distinction between isotropic and anisotropic superposi-
tion.

There are two main challenges in applying the concept of feature dimension-
ality to our logistic regression feature directions:

First, it is introduced in a context of toy models where one has very fine
control of the features, so that S is, in a meaningful sense, the totality of all
features in the data, the complete set of feature directions. While it should,
in principle, be possible to estimate feature directions for the complete set
of possible bigrams, this is not feasible. Even if it were, from the represen-
tational realism perspective, the set of bigram-features does not constitute
the totality of features that would be encoded in this space. Alternatively,
one could say that the definition does not align well with our framing of the
feature type set as a set that is relative to the investigation one is performing.
The main reason why this is problematic is that increasing the size of S to
include more feature vectors will increase the denominator, and the feature
dimensionality of most features will decrease. Thus, it is not clear if feature
dimensionality makes sense in the case where one cannot claim that S is the
totality of features.

The second challenge is that the definition of feature dimensionality distin-
guishes between the direction and norm of the feature vectors in S. Our
feature directions, attained by logistic regression, have various norms, and

24

3.3. The Distribution of Feature Directions and Interference

while these norms are not void of information, it is not clear that the norms
are directly useful in the context of feature dimensionality.

We try to deal with the first problem of the dependence of feature dimension-
ality values on the size of S by limiting ourselves to the ranking of feature
dimensionalities: Consider a random subset of P ⇢ S of size k. Computing
feature dimensionalities d1, ..., dk by using only P, and feature dimensionali-
ties d01, ..., d0k using all of S, we find that the Spearman correlation between the
two is very high (> 0.99), even though d01, ..., d0k are much lower in general
because of the greater denominators involved. From this observation, we
believe that the ordering and comparison of feature dimensionalities might
still be meaningful to consider, even if we have this problem.

For the second problem, there is always the option to leave it open and com-
pute feature dimensionalities using both normalized and non-normalized
bigram feature directions: Since the intention behind the logistic probing
was primarily to find the direction, intuitively we favor the approach of us-
ing normalized versions. In the unnormalized case, we have:

Di =
||wi||

2

Âj(ŵT
i wj)2 =

1
Âj(ŵT

i ŵj)2 = [Â
j

sim(wi, wj)
2]�1

which is the inverse of the sum of squared cosine similarities. Since we are
considering only rank, this means that intuitively feature dimensionality is
a matter of having few close neighbors, or about ’how crowded the area of
space is’, or ’how distinguishable the feature is from other features’.

3.3.3 Determinants of Feature Dimensionality

What might determine the feature dimensionality of a feature type? In [16],
the authors investigate how sparsity (feature frequency), correlation, and the
importance of the feature are involved as factors. The setup in [16], where
importance is a specific parameter associated with a feature, does not easily
transfer to our setup, however.

Intuitively, if a feature is very frequent but unimportant in the sense of
having no relevance at all for the loss, then we might not expect the feature’s
accessibility to be high, and there is no reason why the representation should
favor a high feature dimensionality. One could also imagine a binary feature
that is not very frequent but is very important in the sense that, in the case
where it is present in a prefix xt of the input, it has significant implications
for attaining low per-token losses on the following tokens x>t. Thus, one
might suspect that feature dimensionality is determined by the frequency,
importance, and the relationship between the two.

However, other aspects might also be involved: If two features are in some
sense similar and have very similar implications in terms of optimal model

25

3. Feature Accessibility

behavior, one might hypothesize that their feature directions are similar.
Again, we don’t see that this similarity should necessarily involve correla-
tion. It might be objected that it seems very unlikely that two features are
very similar without being correlated, or that if so, then it would be better
to view them as a single feature.

Lastly, one would ultimately expect feature dimensionality and linear acces-
sibility to be quite related. If a feature type has its own allocated dimension,
such that no other feature vector has similarity with it, and its feature di-
mensionality in the unnormalized case is 1, then one should be able to get a
very effective linear classifier. Likewise, if the feature dimensionality is very
low and many other feature directions are in the neighborhood, then this
suggests that it is hard to distinguish and false positives would be one of
the problems, giving lower linear accessibility.

3.3.4 Feature Dimensionality of Bigram Feature Vectors

We compute feature dimensionality values using the feature vectors iden-
tified in Section 3.2.3. Though we have seen in Section 3.2.4 that using
”half-adversarial probing dataset” one can increase the linear accessibility
for some bigrams which would lead change in the feature dimensionality,
we do not have probes and the associated weight vectors for many bigrams
trained using such a setup (one could consider training only on bigrams that
achieve low AUC-PR score). It seems that the fact that some bigrams get low
probe performance at least in some cases is quite closely related to the fact
that its probing vector has many nearby probing vectors as neighbors and
therefore we should still be able to get some insights even if using better
probes would be advantageous.

(a) (b)

Figure 3.3: Feature dimensionality for approximately 2 thousand bigram feature types based on

feature vectors in residual stream depth s = 1

26

3.3. The Distribution of Feature Directions and Interference

In Figure 3.3a, we show the computed feature dimensionalities based on
1980 normalized weight vectors from the probes trained on the residual
stream s = 1. We note again that the absolute values are not necessarily
so meaningful because they involve only a small subset of all the feature
types. We find the two outliers with the highest feature dimensionality to
be the bigrams (id,=”) and (class,=”), which both occur in HTML, and other
bigrams associated with HTML such as (td,>), (script,>), and (string,>) also
have high feature dimensionality.

The bigrams with the lowest feature dimensionality are bigrams of the type
comma followed by words such as ”all”, ”one”, ”in”, ”like”, ”both”, called
stopwords. One hypothesis is that these stopwords are quite similar in terms
of their embeddings, and that this similarity carries over to the feature vec-
tors learned by the probes. However, this explanation seems to be false, as
the stopwords are not particularly close. Alternatively, it might be related
to the comma ”,” having an embedding whose norm is very small; out of
50K types, it has the 280th lowest norm. Newline has the 263rd lowest norm
and is also strongly represented among bigrams with low feature dimen-
sionalities. It is not clear how exactly this would give rise to the feature
dimensionalities observed. The tokens have low norms too, in the lowest 2-
3% of token embedding norms.5 However, looking at the norms of the type
embeddings in order to understand the feature dimensionalities could be
problematic because of the attention-MLP parallelism in Pythia models: The
MLP in block 0 takes only type-embeddings as input, and therefore the out-
put of this MLP contributes significantly to the representations of individual
tokens.

In Figure 3.3b we plot the feature dimensionality according to the feature
frequency rank of the bigram feature types: The lowest ranked bigrams are
the most frequent. Given that the rank is directly related to the feature
frequency, though we did not explicitly hypothesize it, it is surprising that
the two are not visibly correlated.

3.3.5 Bigram Feature Importance

As mentioned, one would expect importance of a feature to be a determin-
ing factor in its feature dimensionality. In [16], because the authors are
investigating a simulated setup, the importance can be specified directly as
a coefficient in a loss term. As stated above, we think that intuitively a bi-
nary feature type z is important, if for a sequence x, if the prefix sequence
xt has the feature, meaning z(xt) = 1, then it is useful to use this feature
for attaining low per-token losses on the following tokens x>t. While we

5Specifically, the stopwords have norms of 0.7528, 0.7847, 0.5662, 0.7626, 0.8043, 0.5608
respectively. The proportion of types that have embeddings with a norm less than .8 is less
than 2%.

27

3. Feature Accessibility

investigated ideas for defining the counterfactual where a bigram feature
was not present and looked at the change in loss for the remaining tokens
in the sequence under this counterfactual, this proved hard to do and com-
putationally expensive and we present another idea.

As mentioned in 2.2, the n-gram statistics of text imply that bigram features
have some value for predicting the next token. As mentioned we can imag-
ine bigram features that are not directly predictive of the next-token but still
have importance for prediction. Focusing on only the next-token prediction
for measuring importance instead of all later predictions is thus a limitation
but more easily accessible.

Given that both the feature frequency and the feature importance ought to
be important to the degree to which a model will model a feature there is
also the question of the relationship between the two. We propose a notion
of bigram advantage as a scalar function of a bigram L : V2

! R. For a bigram
(a, b) 2 V

2, the advantage L(a, b) is measured with respect to a given model,
in our case Pythia-410m.

L(a, b) = p(ab)Â
c

p(c|ab) log
p(c|ab)
p(c|b)

This bigram advantage is thought of as a form of product of the feature
frequency and the feature importance. We emphasize that we think this idea
of advantage only captures importance of a bigram feature to a very limited
degree but we will now introduce the motivation behind the definition of
L(a, b).

Consider one of the simplest model of a sequence data distribution which
would be a unigram model q(v). This model has a vector of O(V) parame-
ters specifying the probability of occurence of each token. With respect to
the data, this model has a certain cross-entropy. Another step of complexity
for a model is q(b|a). This model is parameterized by a matrix of O(V2)
parameters specifying the probability of one token following another. As-
suming we are not care about the predicting the first token in a sequence,
this model has a certain cross-entropy. In the language of features, the model
could perhaps be said to operates on the features ”the input sequence ends
with token a”, i.e. ”unigram features types”.

Assume now that we have an optimal such model where q(b|a) = p(b|a)
where p is the data distribution. Assume we are afforded V additional pa-
rameters in this sense: We can select a single bigram AB, and use the V
parameters to model q(c|a = A, b = B) and will be given access to ground
truth probability mass function p(c|a = A, b = B) specifying the trigram
statistics for AB, so that q(c|a = A, b = B) = p(c|a = A, b = B) for exactly
the bigram AB, but in all other cases we make our predictions using the

28

3.3. The Distribution of Feature Directions and Interference

bigram statistics. In the case we see a sequence ending with AB, we will
use p(c|a = A, b = B) for predicting instead of our previous option p(c|b)
attained from the O(V2) matrix. If the goal is to minimize cross-entropy,
which bigram AB should we select? The answer to this question is in a
narrow sense a possible answer to the question of which bigram feature a
model should care more about modelling.

Assume that the model wants to maximize the negative cross-entropy�H(p, q).
Because the model cares about no more than trigrams, we can evaluate the
cross entropy using the data distribution over trigrams, and write (abc) ⇠
p.6

E(abc)⇠p[log q(c|a, b)] = Â
abc

p(abc) log q(c|a, b) =

Â
ab

p(ab)Â
c

p(c|ab) log q(c|a, b) =

Because the model q(c|a, b) will only use both of the preceding tokens for
the single bigram we have selected, call it a0b0, we can write

"

Â
ab

p(ab)Â
c

p(c|ab) log q(c|b)

#
�

"
p(a0b0)Â

c
p(c|a0b0) log q(c|b0)

#
+

"
p(a0b0)Â

c
p(c|a0b0) log q(c|a0b0)

#
=

Defining C = Âab p(ab)Âc p(c|ab) log q(c|b) as a constant that is indepen-
dent of our choice a0b0 we can write it as

C + p(a0b0)Â
c

⇥
p(c|a0b0) log q(c|a0b0)� p(c|a0b0) log q(c|b)

⇤
=

C + p(a0b0)Â
c

p(c|a0b0) log
q(c|a0b0)
q(c|b0)

= C + L(a0, b0)

This leads us to the result that the bigram a’b’ to be selected in the setup
and assumptions should be the one that has the greatest bigram advantage.

This advantage consists of a product of two factors, the first is the probability
that a’b’ occurs, the feature frequency, the second is the expected log-fold
increase with respect to all the continuations c. We call the second factor the
unweighted advantage, and the product the weighted advantage.

6We can either assume the model is always used to predict tokens given at least a context
of two tokens or that it also model the two initial tokens in a sequence, but in any case this
should not make a difference in this context.

29

3. Feature Accessibility

There are two ways we might try to evaluate L(a0b0) in practice, for a specific
bigram a0b0. We can make a estimate the pmf p(c|a0b0) from data, by collect-
ing instances a0b0c for any c, we can, likewise by collecting instances b0c for
any c we can estimate the pmf p(c|b0) and lastly, as we did in the beginning
of the chapter, collect instances of ab for any a and b to estimate p(a0b0).

Alternatively we suggest a model-based approach for the unweighted advan-
tage: We can use a Transformer language model to compute p(c|a0b0) and
p(c|b0) by forwarding the short sequences (a’,b’) and (b’) through the model
and collecting the predictive probabilities. Behind such a choice would be
an assumption that for sufficiently trained Transformer language models
are sufficiently calibrated models of the bigram and trigram statistics of the
data. This is an assumption that might be problematic, and we highlight it
as a limitation to a proposed metric that is already has its limitations. As is
also mentioned later, we find that unweighted advantages computed using
Pythia-410m and Pythia-1b are strongly correlated which could either indi-
cate that they are indeed calibrated to the bigram and trigrams statistics of
the data or that they are biased in a similar way.

3.3.6 Hypothesis

Informal hypothesis: In early residual stream layers the feature dimension-
ality of bigrams features is correlated with the importance of the features.

Specific hypothesis: In residual stream depths s = 1 and s = 2 of Pythia-
410m there is a statistically significant positive Spearman rank correlation
between the the feature dimensionalities computed based on the 1980 can-
didate feature vectors computed in the previous section of the weighted
advantage of the bigram feature type.

3.3.7 Method

The methods of feature dimensionality and advantage is described in the
above sections.

We choose the same 1980 bigrams considered in the previous experiments.
For a depth s, we consider the feature direction for a specific bigram feature
type zk to be the weight vector w

s
k associated with the classifier Cs

k, where
the weight vector is scaled to be unit norm For the depth s the associated
feature dimensionalities by using the feature directions at that depth s.

Separately for each of the 1980 bigrams we compute the unweighted ad-
vantage using the Pythia-410m. We find that the unweighted advantages
computed using Pythia-1b correlate very strongly with those attained for
Pythia-410m. For weighted advantage we use the empirical feature frequen-
cies derived from occurence counts in T77K (see 2.2.2)

30

3.3. The Distribution of Feature Directions and Interference

As mentioned we believe that only the ranking of feature dimensionality is
meaningful when we cannot be said to be considering the totality of fea-
ture types, and because bigram advantage is also primarily meaningful in
terms of ranking, for a depth s we compute the Spearman Rank Correlation
between the unweighted advantages and the feature dimensionalities.

3.3.8 Result

For unweighted advantage which is supposed to be our metric for impor-
tance, we find that at all depths considered s 2 {1, 2, 3, 4, 5, 6, 8, 11, 14} the
Spearman Rank Correlation is between 0.214 and 0.285 with the highest cor-
relation being at depth s = 5 (p-values < 10�20)

For weighted advantage which is supposed to be a our metric for the prod-
uct of feature frequency and feature importance, we find the Spearman Rank
Correlation to be the lowest at s = 2 where it is 0.087 and highest at s = 5
where it is 0.159 (p values < 10�5). In Figure 3.4 we show the relationship
for both weighted and unweighted advantage. Since weighted advantage is
dominated by the the strong differences in feature frequencies described in
Section 2.2.2 and we saw that the feature dimensionality seemed to be rela-
tively independent of the rank of the bigram it might not be so surprising
that the association between weighted advantage and feature dimensionality
is not so strong.

(a) (b)

Figure 3.4: Association between feature dimensionality and weighted and unweighted advantage

respectively, for s = 5 where the e↵ects are the largest among depths considered.

While the effect is stronger for the association between feature dimension-
ality and bigram advantage, the association is still weak. If there is indeed
a pattern here, there are multiple sources of noise and limitations to the ex-
periment we conducted: The feature vectors are limited by aspects of the
probing performed, including the construction of the probing datasets and

31

3. Feature Accessibility

details about hyperparameters. Secondly, we are normalizing the feature
vectors which might be relevant for better idea of the feature dimensional-
ity. Thirdly, we are using a metric of importance that has many limitations
described above, including that the importance of many bigrams is not best
viewed as their contribution to prediction of the next token in the sense
entailed by the definition of bigram advantage.

Lastly, echoing discussion in Sections 3.2.3 and 3.3.1: Feature vectors that are
grouping together will have reduced feature dimensionality but this does
not necessarily mean that they are not important, maybe the feature types
are similar in some sense and should be treated as a group. Focusing on
individual feature dimensionalities and importances is maybe mostly mean-
ingful when features are really unrelated and separate aspects of the data.

32

Chapter 4

Feature Usage

In the previous chapter, we investigated feature accessibility as a way of
understanding what features could, in principle, be used by a module that
can only use linear information in the residual stream. We also found vectors
associated with these features but could not necessarily conclude anything
about whether these subspaces related to the model’s usage of the feature.
However, [35] [16] [25] quite explicitly think of features not only as being
accessible but also as being ”used” by modules such as MLPs. In this chapter,
we will present ideas about what it could mean to say that a model linearly
uses a feature and how to investigate it. Ideally, we want to move on from
having validated the linear accessibility of a large number of bigram features
packed in the spaces of hidden states to validate that these features are being
”used” through linear encodings, which would lend support to the idea of
superposition in Transformer language models.

Just like there is no clear consensus regarding the notion of features, there
is no consensus on the idea of what it would mean for a model to use such
features. From the line of work that pursues an understanding of models
as having circuits [35], models are understood to represent features, for ex-
ample, in linear subspaces, and parts of the model, such as neurons, will
then perform understandable computations on these features. On this view,
in a vision model, a binary car feature is ”detected” by what amounts to
an almost boolean logical computation on lower-level ”window”, ”wheels”,
and ”car body” features. From this perspective, the most intuitive approach
to investigating feature usage is to find lower-level and higher-level features
and their encodings and study the relationship between them. It is a rela-
tively explicit goal of work like [16] [10] to understand superposition and
identify feature directions in order to proceed to understand such circuits.

A variety of relatively different lines of work seem to consider usage to be
about causality: Causal interventions that modify hidden states and encod-
ings of features should have various effects on the following hidden states

33

4. Feature Usage

and the outputs of the model [3] [6] [28] [41] [20] [32]. For example, [28]
proposes a method for evaluating explanations of neurons by constructing
tasks associated with the feature and assessing how causal interventions on
the neuron affect the model’s ability to solve the task. Relatedly, [20] and
[46] advance a method where a model’s ability to solve a task is explained
by an alignment of the hidden states with a causal model proposed by the
researcher.

As argued in [6], a necessary condition for a model M using a feature type z
is that its output, and therefore its inputs and hidden states, should have sig-
nificant mutual information with z(X).1 Following the language of residual
networks and linear accessibility we introduced in 3.1, we might say that a
necessary condition for a residual block fs operating on hs(X) to linearly use
z(X) is that z is linearly accessible at depth s. For the model more broadly, a
necessary condition for a residual model to linearly use z is that z is linearly
accessible at some depth s.

The trigram statistics of the data mean that certain bigrams AB have certain
associated tokens C that are likely continuations. This means that one way
of investigating the causal aspect of linear encodings is to perform causal
interventions and assess the effect on the model’s assignment of probability
mass to such likely continuations. This has various limitations: It is not a
priori clear what the relationship between bigram feature direction and like-
lihood of C should be. Even if it is most natural to expect that increasing
the ”activation” of a feature should increase it and ”deactivation” decrease
it, one would expect that many kinds of features, bigrams included, have
a more complex relationship to model outputs. Even if there was a clear
relationship for bigram feature types, it does not easily transfer to investiga-
tions of more complex features. Despite such limitations, we will attempt
investigations in this direction below.

We also propose that there could be ways to understand some aspects fea-
ture representations and their involvement in the computation of the for-
ward pass without studying relationships between lower-level and higher-
level features or their relationship to specific model outputs: While the
simplest interpretation of the circuits view suggest that features are either
linearly accessible or not and that feature detectors are localized to spe-
cific modules, some lines of work could be viewed as suggesting a differ-
ent picture where modules act to gradually increase linear accessibility of
features and that the linear accessibility of higher-level features gradually
increases through circuitry that is spread out across modules [31] [5] [21]
[47]. From this perspective a starting point would be to understand the

1This is with our terminology, in [6] ”concepts” are viewed as random variables for
which there exists a joint distribution over inputs and concepts but need not be deterministic
functions of the input.

34

4.1. Methods

non-interventional/observational change in linearly accessibility of features
across depths s and use causal interventions to understand the way blocks
or modules are causally involved in changes in linear accessibility. Here our
main proposals is to use concept erasure to intervene so as to reduce linear
accessibility in one hidden state and investigate its effect on downstream
linear accessibility.

4.1 Methods

4.1.1 V-information and Least Squares Concept Erasure

[47] presents an extension of information theory under computational con-
straints or ”usable information”. We briefly present the idea here and refer
to the paper for formal details. Consider two random variables X and Y with
joint distribution PX,Y. Let V be a a class of predictive models q(y|x) for pre-
dicting Y using ”side information” X or by ignoring the side-information
by having a predictive distribution q(y). In our context of binary feature
types V should be thought of as the family of logistic regression classifiers
parameterized by the weight vector and bias scalar, and ignoring the side-
information should be thought of as the logistic regression classifier having
a zero vector as weight vector so that the prediction is only based on the
constant b.

They define the conditional V-entropy as the minimal achievable cross-entropy
using a model q(y|x) from the family V so that

HV (Y|X) = inf
q2V

EPX,Y [� log q(y|x)]

This can roughly be thought of as the binary cross entropy for a classi-
fier from the previous chapter evaluated on the interpretation distribution,
though we do not have any guarantees since the probes are trained on an-
other distribution. They define the V-entropy as conditional V-entropy but
with no conditioning on side-information X in the sense that q 2 V here is
restricted to be a constant classifier

HV (Y) = inf
qconst.2V

EP(X,Y)[� log qconst.(y)]

In our context of binary feature types, this can be thought of as the on-
distribution entropy of z(X). Analagously to mutual information, the V-
information from X to Y is the reduction in V-entropy when conditioning
on X.

IV (X ! Y) = HV (Y)� HV (Y|X)

When talking about the linear information about a feature type z in hidden
state hs(X) of a model we mean IV (hs(X) ! z(X)). It would also be useful
to view z being linearly accessible at s to mean that IV (hs(X)! z(X)) > 0.

35

4. Feature Usage

For such a family V of predictors we say that X guards Y, if IV (X ! Y) is 0
or very small. [40] We say that X linearly guards Y when V is a a family of
linear predictors such as our logistic regression family.

LEACE [6] is a method for concept erasure based on the concept of linear
such guardedness. A LEACE eraser r : Rd

! Rd is an affine function whose
goal is to ensure that r(X) linearly guards Y. This means that IV (X ! Y)
is not necessarily zero but IV (r(X) ! Y) = 0. In our context it means
that applying a specific eraser Erasers to the hidden state hs(X) could make
IV (r(hs(X))! z(X)) = 0 which would mean that a logistic regression probe
for a bigram feature type would perform no better than a constant predictor
based only on the bigram feature frequency.

The LEACE eraser is both an affine transformation and the erasure is also
trying to limit the ”damage” to X by having the expected norm of the change
E||X� r(X)|| be minimal.

LEACE should allow us to study feature types, their linear accessibility and
how the action of modules relate to this linear accessibility by allowing for
a removal or reduction of the linear accessibility from a hidden state.

4.1.2 Causal Interventions

An ablation is a causal intervention where a possibly stochastic ablation func-
tion Ablate : Rd

! Rd is used to alter a hidden state. For a residual network,
an ablation of the residual stream hs(X) using such an ablation function we
denote by

h0s(X) Ablate(hs(X))

where all downstream processing will now use this new value.2

Let Eraserz
s be the LEACE eraser that makes Eraserz

s(hs(X)) linearly guard
z(X). Then by erasure of z at s we mean

h0s(X) Eraserz
s(hs(X))

The idea of intervening on representations by adding a vector that is sup-
posed to be related to some concept is a simple idea and so is not especially
novel, see for example concurrent work [48] and [45]. Intervening by assing
a vector v to a hidden state hs(X) we denote by

h0s(X) hs(X) + v

In directional activation intervention, inspired by the idea of directional ac-
tivation patching [44], we consider a vector v and modify the hidden state

2Ablations can be performed for a variety of Transformer language models, including
Pythia models, using TransformerLens hooks functionality. [34]

36

4.2. Effect of Addition Interventions on Model Output

hs(X) to have a certain dot product t with v

h0s(X) hs(X) + (t� hs(X) • v)v

4.2 E↵ect of Addition Interventions on Model Output

In the case where we have a specific binary feature type z and believe to be
in possession of a feature direction u

s
z in a space such as the residual stream

rs at depth s, there are some cases where we expect the feature to have
relatively direct relationship to the model prediction. In the case of bigram
features we seek to investigate such relationships using an idea of empirical
next-tokens and addition interventions.

4.2.1 Method

Assume we are dealing with a bigram feature type zk and the residual
stream rs at depth s. Then assume, we have a vector u

s
k 2 Rd, for example

the logistic regression weight vector w
s
k associated with the logistic regres-

sion classifier Cs
k that we trained in Section 4.3.1. We could be interested

in assessing whether the classifier not merely tells us something about the
linear accessibility of zk at depth s but whether the direction w

s
k learned by

the classifier relates to the usage of zk. We will do so by performing an
intervention on 2-negative validation sequences x 2 X

val
2neg:

rs
T(x) rs

T(x) + cu
s
k

where u
s
k is a unit vector and c is then the norm of the added vector.

Consequent sets

Inspired by the idea in [33] that models learn discrete prediction rules we
view a bigram AB as being the basis of a prediction rule connected to the
trigrams statistics of the training data.

Consider a Transformer language model q, we use Pythia-410, the same
model as we are investigating, but this need not necessarily be the case, a
larger model like Pythia-1b which is also trained on The Pile oculd also be
used.

As we did when we considered the bigram advantage in Section 3.3.5, we
consider the bigram as a the short sequence (a,b), for which q can give us a
probability mass function q(c|a, b) over next tokens. Likewsie we consider
(b) as a sequence of one token for which we likewise can get the probability
mass functions q(c|b).

37

4. Feature Usage

We are interested in tokens C for which it holds that C is upregulated when
preceeded by AB compared to just B.

log
q(c|a, b)
q(c|b)

> g

We use g = 2. Intuitively we are discretizing the learned trigram statistics
to view trigrams as specific prediction rules of the form AB! C.

We also require that C should be among the top k = 30 top tokens according
to probability in q(c|a, b). Since models are trained using empirical cross-
entropy the details of assigning mass to next-tokens that are very unlikely
to occur in the data means that we cannot expect the whole probability
mass q(c|a, b) to be calibrated with the whole data distribution. Therefore
we might expect that unembedding space might have some structure that
could result in tokens that have very low rank in q(c|a, b) and q(c|b) to be
heavily upregulated but such tokens are not we are interested in.

For a bigram AB the set of tokens C that fulfill these requirements we call
the ”consequent set” for AB. With g = 2 and k = 30, of the 1980 bigram
feature types considered in Section 3.2.3, 1423 have non-empty consequent
sets.

Empirical Next-Tokens

Another way of identifying suitable tokens C that are continuations of AB
would be to rely only on the data set and not a model. Among the top
ranking bigram we have 14K bigrams C ⇢ K for which it is easy to construct
probing datasets. We consider the top 1000 top ranking bigrams B ⇢ C in
this set, and consider a specific subset of bigrams A ⇢ B for which we will
try analyze the feature use.

For k 2 A and its associated probing training dataset S
train
k the following

holds:

• The notion of a next-token for a sequence in the probing dataset is
defined in Section 2.3. Let Spos

next = (v0, v1, v2) 2 V
3 be the 3 distinct

types that are most common next-tokens in Spos, with c0, c1, c2 being
the number of sequences in Spos where they are the next-tokens. Let
then the occurence frequencies fi =

ci
|Spos|

for i 2 [3]

• Let S2neg
next = (u0, ..., uk�1) 2 V

k be the k = 20 types that are most com-
mon next-tokens in Spos, and associated occurence frequencies gj for
j 2 [k]

• At least one of the following holds:

– f0 > 2 · g0. i.e. the frequency f0 of the top next-token Spos
next is at

least twice the frequency g0 for the top next-token in S2neg
next .

38

4.2. Effect of Addition Interventions on Model Output

– v0 is not among u0, ..., uk�1.

For k 2 A, we write v0(k) 2 V for the top next-token in Spos and call it the
empirical next-token for k. The idea is that v0(k) is either ”up-regulated” or
”unique” as a top next-token compared to S2neg.

We experimented with using these kinds of tokens but a problem with the
approach is that the statistics of the data of which tokens are likely to preceed
AB greatly influence what the empirical next-tokens is in ways that are un-
desirable because they are in a way next-tokens for more complex features.

Model Output

We will consider two aspects of the effect of the intervention on the model’s
output: The effect of the log-probability of the target token and the rank of
the target token.

For an input sequence x of length T to the model q, we denote the predictive
distribution for the next-token at position T + 1 as q(|̇x) which is a probabil-
ity mass function in the V-simplex DV . For numerical reasons and for ease
of assessing changes in probability we focus on the log-probability

p(x)i = log q(i|x) 2 R

for each i 2 [V]. Given a subsequence x in the dataset where the actual
next token is of type i 2 V , the log-probability p(x)i is the negative of the
cross-entropy loss for the token.

Given p(x) 2 RV , some types have higher log-probability than others, and
we let the rank of entry i in p(x) be denoted as r(x)i

3. If type i 2 V which
has the highest probability we will have p(x)i = 0

Ablation Vectors Considered

For a bigram feature type zk and a depth s we consider different kinds of
addition interventions, where we use different vectors. All of these vector
will be normalized to have unit norm before use:

• xmeanpos The mean of the positives

x̄pos =
1

|X train
pos |

Â
x2X train

pos

rs
T(x)

• logreg The logistic regression weight vector w
s associated with the

logistic regression classifier Cs
k

3Though hardly relevant in practice, in case of ties resolve however you please

39

4. Feature Usage

• latvec The first principal component of the difference between posi-
tives and 2-negatives: Take the 800 training positives, pair them with
800 of the 1600 2-negatives. From these 800 pairs, compute 800 dif-
ference vectors. Take the first principal component of these difference
vectors.

• latvec2 The first principal component of the difference between pos-
itives and negatives in general: Take the 800 training positives, pair
them with 800 random negatives. Compute the 800 difference vectors.
Take the first principal component of these difference vectors.

• random A random vector sampled from isotropic Gaussian.

4.2.2 Hypothesis

Informal hypothesis: Feature directions identified by probes have a causal
influence on model behavior, so that adding a feature direction for bigram
AB will result in an increased probability assigned to tokens C that are likely
to follow AB in the training data.

Specific hypothesis: For a bigram AB, associated 2-negative sequences from
the probing dataset ending with B but not AB, intervening with addition
ablation in rs

T(x) using the associated feature direction from logistic regres-
sion probes, results in an increase in mean log-probability and a decrease in
median rank for tokens from AB’s consequent set, when aggregating over
the 2-negative sequences.

4.2.3 Experiment setup

The experiment is conducted on Pythia-410m. Due to resource limitations,
we consider only the first 93 bigrams for which we have the feature direc-
tions. We use s = 2, a choice which could be justified by reference to the
rank-performance curve from Section 3.2.3, but given more resources, we
would be interested in other depths. For each such bigram AB, we take an
arbitrary C from its consequent set and perform an addition intervention
with an addition norm of 12.75. The experiment is set up so that we mostly
just care that the intervention is strong enough to see an effect, and thus
the exact details of the norm should not matter. However, some investiga-
tions indicate that very large norms are not desirable when conducting such
experiments, possibly because we are moving off-distribution.

For each bigram AB, we perform the intervention rs
T(x) rs

T(x) + cu
s
k for

all 200 sequences x 2 Sval
2neg.

4.2.4 Results and Discussion

For the 93 first bigrams, we find that

40

4.2. Effect of Addition Interventions on Model Output

• In 0.94 of cases mean log-probability assigned to C is higher under
addition intervention than under no intervention.

• In 0.875 of cases median rank of C is lower under additiona interven-
tion than under no intervention.

• In 0.8472 of cases mean log-probability assigned to C is higher under
addition intervention with feature vector than addition intervention
with a random vector of same norm.

• In 0.875 of cases median rank of C is lower under addition intervention
with feature vector than addition intervention with a random vector of
same norm.

By inspection, we notice that it is especially in cases where one would not
naturally regard C as a good continuation of AB where these are not the
case, and vice versa, that when C seems like a natural continuation, it is the
case.4

Because of the noise associated with such interventions, we have opted for
an approach where we are only comparing and not measuring the magni-
tude. This also means that it is not straightforward to conduct a statistical
test. However, we consider these numbers sufficient to convince us that the
directions have at least moderate causal influence.

A major limitation of this approach is that it is hard to quantify the causality
we can attribute to the feature vector. In works like [28], the framework is
such that it is possible to quantify how much of the performance of a model
can be explained by a specific neuron or direction, which is more appealing
even if it is not obvious how to apply such a setup to our use case. If the
feature vector considered is similar to another feature vector which is better
in terms of accessibility, usage, or both, then we might see some of these
effects.

For example, as shown in Figure 4.1, additional intervention with the sim-
ple vector x̄pos gives an increase in log-probability of C just as often, and
the logistic regression weight vector w

s
k performs better than x̄pos in terms

of log-probability and rank only in 0.59 of cases, not much better than ran-
dom chance. From a classifier, from the limited investigations we have made,
such vectors will not have good performance in terms of recall and precision
if used in a logistic regression classifier, but this does not mean that their
directions cannot be important in various causal experiments. It does not
seem unreasonable to believe that for a feature type, different ways of eval-
uating causality and usage have different optimal vectors associated with

4Cases where the continuations seem natural involve tokens that are natural words,
which is not always the case, for example, parts of code and symbols like newline.

41

4. Feature Usage

them. Even if a feature type has high linear accessibility, this level of accessi-
bility and the associated subspace might be much stronger than the ”signal”
needed for different modules to use the feature type.

It seems that there is a difference between these two ideas one could have
about superposition:

One idea could be that more than d features are packed in a d-dimensional
space by non-orthogonal one-dimensional spaces in which linear informa-
tion is stored and used by the model, and these spaces are monosemantic,
which informally means that these spaces are ”the only space used to rep-
resent and do computation involving the feature”. Using the language of
[24], monosemanticity could potentially be defined using the definitions of
erasure, encapsulation, stability, and containment, coupled with additional
ideas about feature usage. Such a perspective might be denoted as ”determi-
nate” superposition because it associates with features specific spaces that
have special privilege in terms of representation and usage. It seems that de-
terminate superposition would generally be connected to a representational
realism perspective.

Alternatively, there might be a kind of ”indeterminate” superposition, where
linear accessibility and usage is more decoupled: Maybe, while there is some
space that is more monosemantic in terms of accessibility, some other space
or even multiple spaces that are not really monosemantic are being used in
various ways because they still contain linear information about the feature.
That is seems like a weaker claim about superposition.

Feature Vector Log-prob.

increases

vs no in-

terv.

Median

Rank de-

creases vs

no interv.

Log-prob.

inc. vs.

random

interv.

Rank dec.

vs. random

interv.

logreg 0.94 0.88 0.85 0.8
latvec 0.96 0.61 0.72 0.54
latvec2 0.85 0.68 0.58 0.69
xmeanpos 0.94 0.86 0.77 0.87

Table 4.1: Among 93 bigrams considered, we consider in how many cases the addition interven-

tion results the change in log-probability and rank changes in the hypothesized direction. We do

this for 4 di↵erent types of candidates of feature vectors.

4.3 E↵ect of Erasure on Downstream Accessibility

The discussion at the end of the previous section adds to the motivation to
use LEACE to study the linear representations of feature types. It seems that
one of the problems with the approach above, which could also be a problem

42

4.3. Effect of Erasure on Downstream Accessibility

(a) (b)

Figure 4.1: An example with the bigram (in, the) and the token ” morning” from its consequent

set. In this plots the x-axis is the norm of the added vector, which in the above experiment is

fixed to c = 12.5. We see that as we add the associated logistic regression vector the probability

assigned to ” morning” increases and the rank decreases.

for similar approaches, is that it divides the problem into two: Identifying a
feature direction and evaluating the causal influence of the feature direction.
If the goal is to identify feature directions and validate their causal influence
on prediction in order to break down a model into pieces, it might be that
this is a good approach.

While internally LEACE will perform some form of projection operation,
and in this sense associates a feature type with a specific subspace, the over-
all goal is rather to remove the linear information. One option is to study
a variant of the previous experiment where instead of studying how ad-
ditional intervention increases the probability for specific tokens, removal
reduces the probability for specific tokens. While this is worthwhile, the
next-token approach has certain limitations for bigram features and might
not generalize well to future studies of other kinds of features, and the ap-
proach does not give us much insight into the usage of the features by mod-
ules, whether in the sense of circuits or some other kind of usage.

In the simplest interpretation of circuits, low-level features are either present
in a space or not and form the basis for the detection of a higher-level fea-
ture that is localized in the sense of belonging to a specific module, such
as an MLP module. Given that the linear accessibility of features can vary
at different depths, it might be useful to consider a perspective where lin-
ear information about lower-level features gradually increases with depth
and linear information about higher-level features gradually increases ac-
cordingly. This is not something that is easy for us to study, but given
that many features with good linear accessibility are central to superposi-
tion, understanding the production of this linear information is relevant to
understanding features in superposition.

43

4. Feature Usage

We emphasize that it is already acknowledged in [6] that the application of
LEACE in one hidden state does not imply removal in all later hidden states
and this part of the motivation behind the technique of ”concept scrubbing”
presented in the paper. However the method was not used to study an
individual layer and to which degree concept erasure in one state affects
linear information in the next state.

4.3.1 Method

We propose that study the production of linear information can be done in
at least two ways, non-counterfactually and counterfactually.

We can be interested in how the linear accessibility of a feature type z varies
with depth s in an observational non-counterfactual way.

Using the notation for residual networks and V-information in 3.1 and 4.1.1:
A block fs non-counterfactually linear-consolidates z if IV (hs(X) ! z(X)) >
IV (hs(X)! z(X)) where V is the family of linear models.

Alternatively and complimentarily, we can make causal interventions that
reduce the linear accessibility at one depth s and use this to investigate how
this changes the linear accessibility at later depths s0 > s.

For a feature type z, for a depth s we fit an associated LEACE eraser Erasers
(see) and apply it to a causal intervention where we apply the eraser at
depth s

r0st (x) Eraserz
s(r

s
t(x))

for all t 2 [T] when T is the length of sequence x.5

We then evaluate at the linear accessibility at depths s0 > s using the meth-
ods described in Section and . We use F1 as a metric for linear accessi-
bility. We could say that a block fs counterfactually linear-consolidates z if
IV (hs+1(X)0 ! z(X)) > IV (hs(X)0 ! z(X)) under erasure of z at s.

A LEACE eraser is an affine function with the properties described above.
However in practice such an eraser has to be fitted to data, limiting the
erasure. Since the experiments in [6] mostly concern downstream effects on
model performance and downstream tasks there is not much information
avialable about evaluating the eraser and so in 4.6 we define the validation
performance for a fitted eraser which also helps give an idea about what
LEACE means in practice. We will note here that as seen in Figure 4.2 the
size of the eraser training set is influences how well the eraser performs and
we are unable to completely remove the linear information but that this need
not stop us from getting some insights.

5Here one could also consider only the last position. We think there are arguments for
and against and that it is ultimately just two different experiments.

44

4.3. Effect of Erasure on Downstream Accessibility

4.3.2 Hypothesis

Informal hypothesis: Transformer blocks are causally involved increasing
linear accessibility for the bigram features so that even when removing the
linear accessibility at one depth it will be present later.

Specific hypothesis: For 50 bigrams feature types zk, averaging over zk, era-
sure of zk at s = 4 will reduce the linear F1-accessibility at s = 4 but the
linear F1-accessibility at s = 5 will be substantially higher.

4.3.3 Experiment Setup

It is due to the compute resource intensity that we limit ourselves to 50
bigrams and s = 4 for 50 different bigrams (a small set due to compute
resource intensity).

For each zk we train the eraser as described in 4.6. Then for each s we
then train a classifier on the the associated rs

T using sequences the eraser
has not seen, and evaluate the accuracy on both probing validation set and
for linear F1-accessibility evaluation we use 120,000 tokens from T10K as a
sample from the interpretation distribution (see Section 4.3.1).

4.3.4 Results and Further Analysis

Figure 4.2: Even with large training sets

LEACE erasers will not fully remove the lin-

ear information.

Figure 4.3: Reducing linear information at one

depth seems to not result in complete removal

at later depths

In Figure 4.3 we show the performances of these classifiers averaging over
the 50 bigrams. We see that at s = 4 where the erasure occurs, the F1
score drops for both on-distribution and probing sets. For probing set the
F1 score ”recovers” again at s = 5 while the on-distribution performance is
also increasing but thereafter slowly falls.

There is a problem with this experiment, that boils down to The Problem
of Positional Binding as described in Section 3.1.1. We cannot conclude

45

4. Feature Usage

that that block f4 counterfactually linear-consolidates the bigrams because
the residual streams states r4

T(X) and r5
T(X) do not correspond to what we

denoted hs(X) and hs+1(X), because these would correspond to the combined
state of the residual streams for all token positions. In other words it is most
plausible that the MSA module in block 4 is responsible for most if not all
of this recovery of linear accessibility by transferring information about the
identity of the token at position T � 1 from the residual stream r4

T�1 to the
residual stream r5

T thereby resulting in a high linear accessibility at s = 5.

Intervening on MSA outputs

One way of assessing this is to make a more complex causal intervention.
In this intervention we will perform erasure of z at s as before but will also
perform batch-mean-ablation of the MSA module in block f4. The aim of such
an intervention is to remove the transfer of information about the identity
of the token at position T � 1 to the residual stream at position T. We use
the notation from A.8.

as0
T(x)0 EPX [a

s0
T(X)]

for all downstream depths s0 � s. In practice we will take the mean of
all MSA outputs for all tokens in the batch. This has the limitation that it
can be a source of noise and error affecting the conclusions. Other choices
than batch-mean-ablation could be used, it is however easy to implement
and mean-ablation generally does less damage to representations than zero-
ablation.

Due to computational limitations we will not perform an experiment on
many bigrams again, instead we will perform this intervention on a few
bigrams with the hypothesis that the linear accessibility at later depths will
now not increase so much.

(a) (b)

Figure 4.4: E↵ect of erasure on downstream linear accessibility when also blocking information

transfer by attention module for two di↵erent bigrams at depth s = 2 and s = 3.

46

4.3. Effect of Erasure on Downstream Accessibility

In Figure 4.5 we show examples of two bigrams where we perform erasure
at s = 2 and s = 3 respectively. The thick lines orange line indicates the lin-
ear F1-accessibility with only erasure at s and no attention module ablation,
while the orange of dots and dashes indicate the more complex intervention
described. We see that at depth s + 1 the more complex intervention does
not result in as high a linear accessibility as with only erasure at s. This is
what we hypothesized, indicating that the attention module is involved in
contributing to the increase. However, the even when blocking the transfer
of information by the attention module in this way the linear accessibility
immediately downstream is still considerable, suggesting that the MLP mod-
ule is also involved. This is in line with another investigation below.

In both figures we see that the downstream accessibility under the complex
intervention is markedly different from only erasure at s and that the dash-
dotted curves are quite different in the two examples. Since the attention
ablation is performed at each downstream depth s0 the residual stream rT

s0(x)
will be increasingly off-distribution and it is not clear how much we can gain
from reflecting on the shapes of these curves especially when it is only two
bigrams we are considering.

The relatively substantial linear accessibility immediately downstream un-
der the complex intervention seems to be something that is mainly happen-
ing for bigrams with high feature frequency. We consider 50 bigrams with
ranks spread relatively uniformly in the interval 0 to 632. For these bigrams
we separately perform both kinds of interventions, erasure at s = 3 and
also both erasure and MSA ablation at s = 3 and compare the linear F1-
accessibility at s = 4. The mean F1-accesibility is 0 at r3

T(x). For comparison
erasure at s = 3 the mean F1-accessibility at s = 4 is 0.16 and median 0.05.
For erasure and MSA ablation the mean F1-accessibility at s = 4 is 0.03 and
median 0.01. This means that when aggregating over these bigrams block
3 does not seem to actively linear-consolidates bigrams, or that this only
happens for high-ranking bigrams. In Figure 4.5a we show how this active
linear-consolidation is related to the rank of the bigrams.

Accessibility in the Following MLP

The problem of positional binding is not present if we restrict ourselves to
focusing on how after an intervention for erasure of z at s the following MLP
in block s processes the ablated r0sT (x).

After the at layer s, the ablated residual stream r0sT (x) will enter the MLP:
First it will go through LayerNorm as described in Section A.4, where we
also describe how LayerNorm can be understood as a process of demeaning
followed by normalization followed by an affine transformation the last of
which can be composed with the first affine transformation of the MLP.

47

4. Feature Usage

(a) By performing erasure at depth s = 3 and

mean-ablating the attention module at s = 3
it seems that the MLP at s = 3 has a small

but actual resposibility for actively increasing the

linear accessibility of the most frequent bigram

feature types.

Figure 4.5

We perform erasure at s = 3 for 100 different bigram feature types, and as-
sess the linear F1-accessibility in for the different hidden states in the MLP
for the last token position. In Figure 4.6 the names on the x-axis correspond
to names of the spaces (so called ”hook names” in TransformerLens). The
boxplot for hook mlp out is the the space of MLP outputs that are added to
the residual stream. The fact that the linear accessibility is low in this space
in 4.6a in this space agrees with the results above that the block does not
have any significiant level of active linear-consolidation. It is interesting to
note however that the state ln2.hook normalized has very high F1-values
suggest that LayerNorm can undo the linear erasure, even though this in-
formation seems to be destroyed in the following spaces of pre-activations,
post-activations and MLP outputs. It seems plausible that the limitations of
these kinds of erasure showcased in Figure 4.2 is relevant to understanding
unintuitive variation in F1-performance between these spaces.

Conclusion from Further Analysis

Though the original results at the top of this section suggested that Trans-
former blocks might counterfactually increase the linear accessibility of bi-
gram feature types, further investigations cast doubt on this. In one exper-
iment, we blocked the transfer of information from the residual stream for
the token at position T � 1 to the residual stream for the token at position
T. In the second experiment, we looked at linear accessibility in spaces such
as the space of MLP outputs for the MLP at depth s. From these two experi-
ments, we conclude that the attention module is mostly responsible for the
increases, but it might be that MLPs are actively involved for bigrams with

48

4.4. Effect of Directional Activation Intervention on Preliminary Probabilities

(a) Performance on The Pile (T10K) (b) Performance on probing validation set

Figure 4.6: F1 performance for assessment of linear accessibility in the following MLP under

erasure at s = 3

high feature frequencies. The idea that high-frequency bigrams perform
differently also suggests that it would be beneficial to repeat the original
experiment with bigrams that have a wider variety of feature frequencies, as
it is most likely a factor that strongly influences the results.

The idea that modules like MLPs actively increase linear accessibility under
the counterfactual of the removal of linear accessibility in the MLP’s input
space was already quite ”bold”, though there is evidence that [31] modules
perform adaptively under counterfactuals.”

4.4 E↵ect of Directional Activation Intervention on Pre-
liminary Probabilities

The results in Section 4.2 indicate that the feature vectors identified by lo-
gistic regression could, to some degree, be viewed as being involved in the
model’s usage of the feature, though more evidence could be used. In Sec-
tion 4.3, we motivated the experiment with the view that, alternatively or
complementarily to the circuit-view of how models make use of features,
one might view the usage of features in terms of modules gradually increas-
ing the linear accessibility of high-level features based on the linear accessi-
bility of low-level features. In this section, we propose to further evaluate
the causal influence of the feature directions using the tools of the Tuned
Lens [5] [14] and directional activation intervention in a way that might also
give some insight into the view just mentioned. As we will explain below,
the Tuned Lens allows us to get a view of the ”preliminary” predictive dis-
tribution [21]. We can then try to understand if a causal intervention using a
feature vector for bigram AB has an influence on the preliminary probability
for a token C in the consequent set for AB.

49

4. Feature Usage

This kind of investigation would fill a middle ground between the kind of
investigation in Section 4.2, which looked at just the causal relationship be-
tween local representation and final output, and the investigation in Section
4.3, which looked at local causal relationships but did not link the feature to
something other than itself, like the next-token C. Consider Figure 4.7, which
shows two bigrams with associated consequent tokens. We will explain be-
low the technical details behind such plots. At each depth s, the Tuned Lens
gives probabilities for sequences x in the associated dataset, and we can look
at how the probabilities for the consequent token change when we perform
a causal intervention that ”activates” the bigram feature in 2-negative se-
quences that do not end with the bigram. The figures contain one example
where the probabilities increase (red versus yellow lines), as one would hope,
and another where they do not. We would hypothesize that at least when
aggregating over the many bigram interventions, the probabilities move in
the right direction.

(a) (b)

Figure 4.7: Example of Tuned Lens intermediate predictions of a next-token C for a bigram AB

and an example of how applying directional activation patching in residual depth s = 2 a↵ects

the intermediate predictions for this next-token C.

4.4.1 Method

Direction activation intervention

In Section 4.1.2 we describe in general what we call directional activation
intervention. If we are intervening at layer s, we compute the dot-products
of positives X train

pos (rs
T) (see Section 2.3) with w

2
k, and consider the mean tmean

and max tmax

tmean =
1

|X train
pos (rs

T)|
Â

x2X train
pos (rs

T)

[rs
T(x) • w

s
k]

50

4.4. Effect of Directional Activation Intervention on Preliminary Probabilities

tmax = max
x2X train

pos

[rs
T(x) • w

s
k]

We will perform direction activation intervention at depth s for the last-
token position for sequences that are 2-negatives:

rs
T(x) rs

T + (t� rs
T(x) • w

s
k)w

s
k

We will use tmax in the experiment because we are interested in getting a
strong effect but it might be that using tmean more principled approach.

Tuned Lens

For each depth s in Pythia-410m we are in possession of a Tuned Lens affine
transformation that have already been trained for Pythia models [5]. They
allows the skipping of the rest of the blocks at depth s0 > s to give an
early prediction of the final residual stream at depth smax stream rsmax

T (x)
(see Appendix A).

f tuned
s (rs

t(x)) = W
tuned
s rs

t(x) + b
tuned
s 2 Rd

This is an alternative to the ”logit lens” [13] [5] [31], where the prediction
for the final residual stream is simply the identity operation

f logit
s (rs

t(x)) = rs
t(x)

We denote by utuned
s : Rd

! RV as the application of the tuned affine f tuned
s

followed by the deembedding operations which results predictive logits over
the vocabulary.

utuned
s (x) = EoutLayerNorm(f tuned

s (rs(x))) + bout 2 RV

We denote by ptuned
s : Rd

! RV the log-probabilities gained by using utuned
s

ptuned
s (x) = log(Softmax(utuned(s))) 2 RV

For an input sequence x and a target token i, for example (x being ”Windows
Media Player is developed by” and i being ”Microsoft”) we have a corre-
sponding series of log-probabilies using the tuned lens, one log-probability
for each layer s 2 S: ptuned

1 (x)1, ..., ptuned
S (x)i 2 R. which we call a log-

probability trajectory.

These Tuned Lenses for Pythia models have been trained on The Pile using
a form of distillation loss minimizing the KL-divergence between the pre-
liminary predictive distribution and the predictive distribution obtained all
Transformer blocks [5].

51

4. Feature Usage

Using the Tuned Lenses, for each bigram AB with associated consequent
token C, for each 2-negative sequence we have such a trajectory of log-
probabilities for the target token C. We then average over 2-negative se-
quences to get an average log-probability trajectory for 2-negatives p̂s

2neg
for s 2 [smax]. The same we do for positives p̂s

pos. These correspond to
respectively the yellow and green lines in Figure 4.7.

When we perform the direction activation interventions at depth sint. on 2-
negatives we likewise we an interventional average log-probability trajectory
p̂s

int, for the 2-negatives, which corresponds to the red lines in Figure 4.7.

E↵ect ratio

Since we hypothesize that the intervention will move the 2-negative log-
probabilites more in the direciton of the log-probabilities for the postives,
we will consider the ratio

Ds
pos = p̂s

pos � p̂s
2neg

Ds
abl = p̂s

abl � p̂s
2neg

gs =
Dabl
Dpos

For s < sint. there is no difference between p̂s
abl and p̂s

2neg and so we only
care about these when s � sint.

We mentioned in Section 4.2.4 that one unsatisfactory aspect about addition
interventions is that quantification of the effect was difficult and how works
like [28] try to quantify the ”fraction” explained. This kind of ratio will
not directly allow for this since it is not guaranteed to be in [0, 1] but could
maybe be modified to allow for something like this.

4.4.2 Hypothesis

Informal hypothesis: Directional activation intervention will increase pre-
liminary probabilities for consequent tokens.

Specific hypothesis: For a set of 49 bigram feature types, performing direc-
tional activation interventions at depth s = 2 will result in positive effect
ratios gs for most of the bigrams for s 2 {2, 3, 4}.

4.4.3 Results and Discussion

For s being 2, 3 and 4 respectively we find that the fraction of the bigrams
considered for which gs > 0 is 0.82, 0.91 and 0.96 respectively. We count
this as a confirmation of the specific hypothesis.

52

4.4. Effect of Directional Activation Intervention on Preliminary Probabilities

We find that for s = 2, the Ds
pos averaged over the bigrams is 1.3 and Ds

abl is
0.97.

We find that gs for individual bigrams have outliers, and as mentioned we
are not guaranteed for them to be in [0, 1]. We consider median values and
for s being 2, 3, 4 respectively, we find median gs for a bigram to be 0.7, 0.75
and 0.84 respectively.

One limitation is the way we evaluate the effect in terms of the ratio: There
are many alternative choices one could make in defining these things. For
example, we are comparing a ratio of the difference of aggregates. One
could also consider the ratio of aggregates of differences, or aggregate of
ratios of difference. Such choices might influence the results, and it is not
clear what the most principled choice is. Our motivation for this is that we
believe the individual effects of the interventions to be quite noisy, and it
might be that this way of calculating the ratio is helpful in this regard.

The mentioned noise points to another limitation: The Tuned Lenses have
their limitations, especially in this application. They are trained to produce
predictive distributions with low expected KL-divergence from the actual pre-
dictive distribution, and so it is not guaranteed that they should be accurate
”lenses” into preliminary predictions for specific bigrams.

Another factor that might be the most important next step in this direction
would be to use a larger and more varied set of bigrams. The bigrams
we considered have relatively high feature frequencies, and as seen in the
previous section, this can have a strong influence on the results.

Furthermore, as we have mentioned in other contexts, the feature vectors
identified with logistic regression have their limitations, and it would be
worth considering other types of feature directions. Lastly, there are limits to
how useful the consequent tokens are for understanding model usage, and
choices of model and the parameters used for consequent sets could influ-
ence the results. We believe, however, that consequent sets are better suited
than empirical next-tokens in this case because consequent tokens might
be common among the actual next-tokens for the positive sequences, and
thereby our computation of p̂s

pos is more directly linked to the bigram fea-
ture we care about and avoids other features influencing the log-probability
trajectories for positive sequences.

Despite the limitations, we believe that this kind of method, where direc-
tional activation interventions or similar kinds of methods are used together
with probes for related information, is valuable. In our case, it was model
output, and Tuned Lens was used as a form of probe (which is also a per-
spective described in the paper). While the target token cannot be viewed in
our terminology as a feature type because it is not a deterministic function
of the data, the approach could be expanded to consider the relationships

53

4. Feature Usage

between multiple features and their interaction in terms of interventions
and linear accessibility assessed with linear probes. It might be that bigram
feature types and trigram feature types have some kind of partially hierar-
chical relationship where bigram feature types are lower-level features and
trigram features are higher-level. Using probes for each at different depths
and causal interventions to intervene on the relationship could be a possible
avenue. Improving the methods of evaluation beyond the limitations of our
idea of the effect ratio would also be important in this context.

4.5 E↵ect of Erasure on General Model Performance

In this last section of the chapter, we perform an investigation that is not set
up as an experiment; it is more a form of exploration with a few qualitative
evaluations. In 3.3, we considered how certain features could be more im-
portant than others and how it might influence the distribution of feature
directions.

We might be interested in assessing the degree to which a model linearly
uses a feature type at some depth s and compare it to how much it uses two
feature types z1, z2 at the same depth s. One aspect of such an assessment
could be to separately look at the effect of erasure at s of each of the two
feature types and evaluate how much it affects the model’s overall validation
loss.

4.5.1 Conceptual Considerations

However, there are various conceptual aspects to consider:

• While LEACE is supposed to cause minimal collateral damage to the
representations, suppose that because of superposition, the linear in-
formation about a feature type z1 is very connected to the represen-
tation of the linear information about another feature type z01, which
is quite unrelated in its meaning. Then, the erasure of z1 could have
a significant effect on the loss due to the collateral damage to the lin-
ear information about feature type z01. If z2 is in some sense more
important than z1, but z2 does not have a similarly important z02 that is
significantly affected by the erasure of z2, then it could seem like z1 is
more important than z2, even if it is not.

– This suggests that this approach does not investigate the impor-
tance of a feature type in isolation. Instead, it tells us something
about the way z1 is located with respect to other features. If z1
is related to z01 in this way, then there is some degree of indis-
tinguishability in the representations of the information about z1
versus z01. While z1 might not be important in the intuitive sense

54

4.5. Effect of Erasure on General Model Performance

of being important completely separately from any other feature,
by having z1 linked to an important feature z01 in this way, it will
be important in the narrow sense that erasure has collateral dam-
age on features like z01.

• Another aspect (which might be very related to the above concern de-
pending on how you look at it) might be that with such an approach, it
could seem that z1 is important, but really z1 is just a narrow version of
a more general feature z01. The erasure of z1 does damage to the more
general feature z01, resulting in an overestimation of the importance.

– First, it is not clear whether the idea is well-defined that we can
have cases where z1 is a more narrow version of a more general
feature z01, and that z1 is for this reason not a ”real” feature. Even
so, the linear information in z1 would carry a signal about the
general feature. As long as there is linear information about z1,
how exactly it is being used is a different question than whether
and how much it is being used. Even if the information is be-
ing used to do computation that does not specifically involve the
narrow feature, this does not necessarily mean that the feature is
not being used. If the erasure of narrow z1 ends up having so
much collateral damage because of its connection to a more gen-
eral feature z01, then this also suggests that the model might not
significantly distinguish between the broad and narrow feature.

4.5.2 Experiment Setup

There is a limitation to investigating these things: There are many bigram
feature types, and for each we might want to investigate erasures at different
depths, but for each such erasure we also need to compute the loss on a
sufficiently amount of validation data to get an idea of the effect. Thus we
use a smaller set of bigrams.

For a set of zk, we perform erasure of zk at s for s 2 {1, 2, 3, 4, 8, 11, 14} and
compute the resulting cross-entropy under this erasure on 110 sequences of
length 600 from T77K, a sample from the interpretation distribution. While
this constitutes 66, 000 tokens, it is not a large amount of tokens for evalua-
tion of general model performance, and this is a very big limitation of this
idea. The same sequences is being used for each zk and s, with a batch size
of 10.

4.5.3 Results

There is considerable variability in the loss among batches, and to highlight
the uncertainty we have about the results in Figures 4.8 and 4.9, we show

55

4. Feature Usage

(a) Bigram (newline, newline) (b) Bigram (No., .)

Figure 4.8: Increase in general model performance under erasure of specific bigrams at specific

depths s in the residual stream.

(a) Bigram (1, newline) (b) Bigram (A,.)

Figure 4.9: Increase in general model performance under erasure of specific bigrams at specific

depths s in the residual stream.

the distribution of per-batch loss as boxplots for four different bigrams. We
see that the curves of the effect can vary considerably between different zk.

For the bigram (newline, newline), which is the most frequently occurring
bigram, the effect is strong at s = 1 and modest at other depths. For the
bigram (1, newline), the effect is still considerable at s = 1 but less so, while
the effect is very strong at s = 2.

For two bigrams (A,.) and (No, .), the effects are small before s = 4, at which
point the effect becomes large and remains so for the remaining depths con-
sidered. From previous explorations of the PCA of the probing dataset for
the bigram (type,=”), we found that at s = 4, the first principal component
of X (r4

T) sharply separates sequences that end with punctuation (which by

56

4.6. Chapter Appendix: Defining the Validation Performance of a Fitted LEACE
Eraser

construction can only be 1-negatives) from all other sequences. It has been
observed that despite theoretical arguments for why residual streams should
give any value to the standard basis, in practice, residual streams can have
outlier dimensions, which happens in Pythia-410m at s = 4 [17][18] [5]. It
might be that there is a relationship between these phenomena.

While ideally, the LEACE eraser and the probing dataset with its 2-negatives
that also end with punctuation should allow for removing the linear infor-
mation about these two bigrams without keeping the effect on punctuation
minimal. However, as we have seen, fitted erasers are not perfect (see also
Section 4.6.1). While this is something that would be interesting to investi-
gate further, limitations on time and compute resources make us leave these
questions open.

We think that the variation in the curves for different bigrams and, in some
cases, quite localized effects suggest that approaches like this could make
sense. While holding all the mentioned caveats in mind, we also believe that
the idea holds that these kinds of computations can allow one to compare
different feature types at a specific depth, given the strong effects seen in
some of the cases. It would require more rigorous analysis, and the compu-
tational costs are a big limitation.

4.6 Chapter Appendix: Defining the Validation Perfor-
mance of a Fitted LEACE Eraser

For a bigram k, and depth s, consider the associated training and validation
probing dataset X (rs

T). As an example we will use the bigram (type,=”)
and the depth s = 4.

Now consider random splitting of X train into two equally sized X
train
A and

X
train
B

6. We keep the validation set intact as X
val

We fit a LEACE eraser EraserA : Rd
! Rd on X

train
A , and thus call X train

A the
eraser training set.

We apply the fitted EraserA to transform each of the 3 datasets:

X
train0
A = {EraserA(rs

T)|r
s
T 2 X

train
A } and X

train0
B , X val0 are defined in a similar

manner.

For purpose of understanding, let us look at what happens when we train
logistic regression classifier C1 on the unerased training set X

train
A . Then

performance of C1 on each of the datasets is

• X
train
A : F1 = 1, because C1 is trained on this data set.

6For now, we do random splitting on the whole set of sequences and not random split
for each category of positive, 1-negative and 2-negative separately

57

4. Feature Usage

• X
val : F1 = 1, because X

val is distributed as X
train
A and C1 has on-

distribution generalization.

• X
train
B : F1 = 1, because X

train
B is distributed as X

train
A and C1 has on-

distribution generalization.

• X
train0
A : F1 = 0, because EraserA is trained on this dataset to cause no

classifier to be able to get non-trivial performance on this dataset. Thus
C1 which is a classifier does not get non-trivial performance.

• X
val0 : F1 = 0, because X

val0 is distributed as X
train0
A on which EraserA

is trained to have such a result. Thus EraserA generalizes for C1. (And
same for X train0

B)

Now let us train another logistic regression classifier C2 on X
train0
B , and this

data set we call the retraining dataset. The performance of C2 is

• X
train0
B F1 = 0.70 because the classifier is trained on this data and

EraserA only partly generalizes in its erasure to retraining set and it
is a tall order to require a classifier which could be overfit not to have
considerable performance on its training set. We call the performance
in this case g.

• X
train0
A : F1 = 0.38. This score is not so interesting because it mixes

things: The eraser is trained on the X
train
A so we might expect a classi-

fier trained on the erased-distribution to perform worse here than on
X

train0
B

• X
val0 : F1 = 0.53. The performance in this case we call w. This score

does not mix things: The eraser is trained on X
train
A , the classifier we

evaluate the erasure is trained on X
train0
B and is now evaluated on X

val0

which is distributed as X
train0
B but neither has the eraser seen X

val nor
has the classifier seen X

val0 .

”With this setup, we believe it is sensible to define g and w as the erasure
training F1 and erasure validation F1, respectively. Ideally, F1 should be
low and approach 0, meaning that CB cannot learn. This is equivalent for
other binary metrics derived from the behavior of CB on X

train0
B and X

val0
B ,

respectively.

These ideas should generally apply to using LEACE in general. Note, how-
ever, that for our use case, our probing datasets are generally off-distribution
with respect to The Pile and therefore do not show the whole picture.

4.6.1 Validation Performance as a Function of Training Set Size

To understand how the erasure validation performance depends on the size
of the eraser training set, we hold the sizes of X train

B and X
val
B fixed at 1000

58

4.6. Chapter Appendix: Defining the Validation Performance of a Fitted LEACE
Eraser

and 400, respectively, and likewise for their erased counterparts X
train0
B and

X
val0
B . Then we randomly permute X

train
A of 3000 elements and for different

values of k 3000 (step size 10), we train erasers on the first k elements
and record the performance metrics shown above. In Figure 4.2, we plot
the eraser validation F1 as a function of the size of the eraser training set.
As we would hope, the F1 score for the CB classifier on X

val0
B is lower when

the eraser training set is larger; however, we see that beyond 2000 training
sequences, the F1 no longer decreases significantly. While this is undesirable,
we believe that there are still ways to make use of this erasure for studying
feature usage.”

59

Chapter 5

Discussion and Conclusion

The overall goal of this work has been to investigate the idea of features in
superposition in realistic Transformer language models. We summarize the
work and consider various topics for discussion.

In Chapter 2, we discussed the difficulty in determining what counts as a
feature. We opted for a generic approach to features as functions of the data,
while taking into account other perspectives, and argued for studying a set
of bigram features of sufficient size to understand how such features would
be packed in a space by superposition. We advocated for the use of linear
probing as a method of investigating superposition and presented the data
used.

In Chapter 3, we considered the idea of linear feature accessibility as being
a necessary condition for superposition and presented how linear probes
could be used to assess accessibility. We conducted a large-scale experiment
on the Pythia-410m language model, training large sets of probes. Based
on this experiment, we concluded that there was evidence that large sets of
features had good linear accessibility. Given that superposition of binary
features implies a packing of feature vectors in a way where they are not or-
thogonal, we considered how these features were distributed. We found that
some feature directions were quite cosine similar and that, in this sense, the
superposition was not ”isotropic,” which raised questions about whether
this should be used as evidence against bigrams being seen as features or
how central isotropy is to the idea of superposition. From the idea that dif-
ferent features have different levels of importance in modeling language, we
hypothesized that the importance of features is related to how feature vec-
tors are distributed in the space, where more important features are afforded
more ”feature dimensionality,” a concept from the original work on super-
position that aims to quantify how much capacity is allocated to a feature.
We found significant but weak evidence for this idea. It raised questions
echoing the preceding discussions in the chapter and in Chapter 3 about the

61

5. Discussion and Conclusion

notion of features and whether features should be seen as separate factors
in the data or can group together.

Given that we found evidence for linear accessibility in Chapter 4, we moved
on to considering the idea of feature usage as being another necessary condi-
tion for superposition, even though we were not able to establish a concrete
definition. We conducted experiments where we applied feature directions
from the previous chapter in causal interventions, where the feature vectors
were added to the residual streams. We hypothesized that such interven-
tions would ”boost” a bigram feature and lead to a change in the model’s
output behavior, involving an increase in tokens that could be viewed as
sensible token-continuations of the bigram. We found some evidence that
this was the case and concluded that this was evidence of feature usage.
We also performed the experiment using alternative feature vectors, which
would not be associated with similar levels of recall and precision, and in
this sense were less ”monosemantic” subspaces. Even so, some of these
spaces showed considerable evidence of having causal importance. This
raised questions about how central to the idea of superposition it is that
there exist spaces which are highly monosemantic and are also uniquely
responsible for the model’s usage of the feature.

We considered that the original motivation for studying features in superpo-
sition was to identify such subspaces in order to understand higher-level con-
nections between such features in ”circuits”. We argued that a ”strong” view
of circuits entails that representations and usage of features are localized to
specific spaces in which they are being used by adjacent modules to detect
higher-level features, and that this forms the most natural understanding of
what feature usage means. We considered whether superposition could be
viewed as an idea that is separate from the hypothesis of circuits and con-
sidered an idea of feature usage as involving the gradual increase in linear
accessibility of features, which would then be causally related to the linear
accessibility of higher-level features. We attempted an investigation into
how modules might actively work to make bigram features linearly accessi-
ble from the perspective that this question was connected to the view that
the model would use such features. By using the concept erasure method,
we conducted an experiment where we intervened in a hidden state to re-
move the linear accessibility and evaluated how a Transformer layer would
be responsible for recovering the linear accessibility of the feature. We con-
cluded that the attention module was mainly responsible for the recovery
observed, but the experiment had several limitations, including the efficacy
of the concept erasers and the choice of bigrams. We found weak evidence
that MLP modules might be involved in actively increasing the linear acces-
sibility for features that are very frequent.

We conducted an additional experiment aiming to assess the causal rele-

62

vance of the feature directions associated with the bigrams. By performing
causal interventions that aimed to ’activate’ the bigram feature in inputs
that did not contain the feature, we investigated how such interventions
were associated with changes in the probability of the tokens that are likely
continuations of the bigram. Instead of considering the final probabilities in
the model output, we used the tool Tuned Lens to inspect the model’s ’pre-
liminary’ predictive distribution after the intervention. Using this approach,
we found some additional evidence for the causal relevance of the feature
vectors. We argued that some aspects of the methods in this experiment,
including the directional activation patching, evaluating the causal effect on
a target as a ratio, and connecting probes for multiple features, could be a
promising direction for future work.

In line with the investigation of the distribution of feature vectors and their
relationship to each other, and considerations about the importance of fea-
ture vectors, we experimented with the idea that concept erasure could be
applied to a feature in some state to form an ablated model whose new
overall cross-entropy performance could give insight into the importance a
feature plays in a model. Considerations in this context mirrored the earlier
questions about the grouping of features.

Where does this leave us? The results are evidence for a narrow version
of superposition where language models can represent many features in a
hidden space where these features have good linear accessibility and some
degree of usage. While there are certain limitations of the experiments that
could be addressed, looking forward, it seems that linear probes combined
with causal linear interventions could be extended to study a wider variety
of features, especially the relationships between features, which has not been
studied in this work because the features considered are mutually exclusive
by construction.”

If we allow ourselves to discuss this topic at a more abstract level, which
is somewhat removed from specific conclusions that can be directly drawn
from the experiments but seems to underlie some of the discussions, we
would mention the following: It is worth being explicit and formal about
the different possible views and perspectives on the notions of features, rep-
resentations, superposition, and circuits. In the introduction, we articulated
the ’strong view’ of these concepts and their relationships. Strong views
are good because they make it easier to know what is being claimed and
not being claimed, and in some cases, will allow a theory to be falsifiable.
We have claimed that our results contain evidence for a narrow form of
superposition described in terms of accessibility and usage, but a key dif-
ficulty is establishing specific criteria for usage. Especially the notion of
features seems to be difficult, and it would be helpful to articulate strong,
falsifiable views of what it would mean for models to operate on discrete fea-

63

5. Discussion and Conclusion

tures versus something more continuous, and where the line is to be drawn.
Falsifiable views on circuits versus alternative views on the model’s com-
putational process would likewise be beneficial. It seems that focusing on
the cases in which a model performs somewhat symbolic computation that
might require discrete features could be an important aspect of formalizing
such strong views.

64

Appendix A

GPT architecture

In this thesis, we study decoder-only causal Transformer language models.
In this chapter we present a self-contained introduction of this architecture
that will provide the necessary information necessary to present the follow-
ing chapters. The most well-known decoder Transformer language models
are the GPT models by OpenAI, and therefore we will refer to them as GPT
models. [39] However, architectural details is a (very) active field of research
and we are specifically focusing on the architectural details of the models
that we are studying.

Let the vocabulary V = {1, 2, ..., V} be a finite set. Our dataset D = {Di}
N
i

consists of sequences Di = (d1, ..., dTi) 2 V
Ti of various lengths Ti for i 2 [N].

Thus a dataset is a set of N such sequences. It is common to refer elements
of V as a token and likewise a specific instance of such element in a specific
sequence as a token. In many cases this ambiguity is not a big deal, but
due to the details of our studies we will though not common in machine
learning, adopt the type-token distinction used in other fields: We call an
element v 2 V a type and specific instances of this type we call tokens. Thus
a sequence in the dataset consists of tokens, while a model might predict a
specific type as the next token. [37]

Behaviorally, the model M is a function mapping a sequence of T tokens to
T predictive distributions over the vocabulary. If DV denotes the space of
probability mass functions over the vocabulary, the V-simplex,

M : VT
! DT

V

For an input sequence s 2 V
T, the predictive distribution M(s)t 2 DV is a prob-

ability mass function over the vocabulary predicting the next token to after
st. However, we will only be concerned with the last of these predictive
distibutions M(s)T 2 DV

A GPT model has a set of hyperparameters, for our use case the most im-
portant ones are: the size of the vocabulary V = |V|, the hidden dimension

65

A. GPT architecture

d 2 N, the number of Transformer blocks nlayers 2 N and nheads 2 N which
is an an integer, such that d is divisible by nheads specifying the number of
attention heads in a layer.

A.1 Embedding layer

Behaviorally, the embedding layer is a function mapping from vocabulary
set to Rd

fembed : V ! Rd

Implementation wise, the embedding layer consists of a d ⇥ V real matrix
Ein, each column is the embedding for the associated token in V , meaning
that for each token in V there is an associated vector in Rd. Furthermore the
embedding layer has a bias vector bin 2 Rd.

Given a type v 2 V , the one-hot encoding onehot(v) 2 RV makes the em-
bedding layer an affine transformation

fembed(v) = Einonehot(v) + bin

The input to the model is a sequence (d1, ..., dT), and we now associate with
each token in the sequence its embedding vector, giving (e1, ..., eT) 2 RT⇥D

where et 2 Rd for t 2 [T], where et = fembed(dt)

A.2 Residual streams

The Transformer has a residual network architecture.

A residual neural network of nlayers layers, is one where each hidden state
s 2 [nlayers] additively updates the hidden state. Assuming the input is xinput
and layer s is denoted fs

x0 = xinput

xs = xs�1 + fs(xs�1)

for s > 0. We call fs(xs�1) a residual update at depth s.

In GPT models we start with the sequence of embedding vectors (e1, ..., eT)
and each layer is a Transformer block that updates this sequence of embedding
vectors additively:

(r1, ..., rT)0 = (e1, ..., eT) 2 RT⇥d

(r1, ..., rT)s = (r1, ..., rT)s�1 + fs((r1, ..., rT)s�1) 2 RT⇥d

This addition operation is position wise, meaning (a1, ..., aT) + (b1, ..., bT) =
(a1 + b1, ..., aT + bT) and fs : RT⇥d

! RT⇥d

66

A.3. Transformer block

We use the notation rs
t to denote the hidden state at position t at depth s.

Fixing a specific position t, the the sequence of hidden states r1
t , ..., rnlayers

t
we call the residual stream for position t. Thus we view the computational
process as one where T residual streams are iteratively updated. [18]

A.3 Transformer block

Behaviorally, the Transformer block at depth s is a function

fs : RT⇥d
! RT⇥d

providing the residual updates described above. A Transformer block con-
sist of two main parts, Multi-head Self Attention (MSA) and position wise
multi-layer perceptron (MLP) both of which are preceded by LayerNorm
(LN). The models we study are parallel Transformer blocks where MSA and
MLP operates independtly on the input:

fs(r) = (f att
s � f ln1

s)(r) + (f mlp
s � f ln2

s)(r) := MSA(r) + MLP(r)

This is in contrast to a non-parallel approach which is very common:

fs(r) = (f mlp
s � f ln2

s � f att
s � f ln1

s)(r)

A.4 LayerNorm

A LayerNorm layer [2] has the signature

f ln
s : RT⇥d

! RT⇥d

It has two parameters a, b 2 Rd It operates indepently on each position
t 2 [T]:

f ln
s (r1, ..., rT) = (g(r1), ..., g(rT))

where gln
s : Rd

! Rd is

g(x) = a�
x�mean(x)

std(x)
+ b

where � is element-wise multiplication (Hadamard product).

In essence LayerNorm operates on each position independently by Z-normalizing
the entries and applying the same learned scaling and shift vector.

Another interpretation is also useful in some cases: The operation of sub-
tracting the mean is a linear operation x

0 = x�mean(x) = Dx where D =2

67

A. GPT architecture

Rd⇥d. This linear transformation projects out the vector (1, ..., 1)T
2 Rd.

Since x
0 has mean 0, the standard deviation is proportional to it’s L2-norm.

std(x�mean(x)) µ ||x�mean(x)||2

This means that LayerNorm can also be understood as projecting out a single
dimension and L2-normalizing. The consequence is that MLPs and MSAs
can be viewed as only operating on a view of the residual stream where all
vectors are unit-norm, this ”view” is the L2-normalized demeaned residual
stream.

A.5 Multi-head Self Attention

Since the internals of multi-head self attention modules are not involved
in the work (which is arguably a limitation), we refer to [38] [18] for in-
formation about self-attention and to [42] and https://blog.eleuther.ai/

rotary-embeddings/ for information about rotational embeddings.

A.6 Multi-Layer Perceptron

The MLP layer has the signature

f mlp
s : RT⇥d

! RT⇥d

It operates independently on each position

f mlp
s (r1, ..., rT) = (gmlp

s (r1), ..., gmlp
s (rT))

where gmlp
s : Rd

! Rd is a multi-layer perceptron with one hidden layer of
size 4d with GELU activation. [23] [27]

A.7 Unembedding Layer

The unembedding layer has the signature

f out : RT⇥d
! DT

V

For each position in the sequence it produces a PMF over the vocabulary V .

It operates independently on each position:

f out(r1, ..., r
T) = (gout(r1), ..., gout(rT))

so if r 2 Rd

gout(r) = Softmax(EoutLayerNormunembed(r) + bout) 2 DV

68

https://blog.eleuther.ai/rotary-embeddings/
https://blog.eleuther.ai/rotary-embeddings/

A.8. Hook Names

Where Eout 2 RV⇥d, bout 2 R
d

The output (o1, ..., oT) of the unembedding layer are T probability mass func-
tions over the vocabulary p1, ..., pT. The probability mass function pt is used
to predict the token at position t + 1.

These networks have then been trained on a large data set to maximise the
likelihood of the training data by minimising the cross-entropy using vari-
ants of stochastic gradient descent.

A.8 Hook Names

When studying a model M, we will consider the vectors generated at differ-
ent locations within the network. These vectors can be accessed and inter-
vened upon using the PyTorch library TransformerLens [34], which defines
various hook names. We will use the TransformerLens hook name notation
to refer to these locations:

Transformer blocks are zero-indexed, and we will primarily refer to the fol-
lowing hooks: For layer s (zero-indexed) and token position t (1-indexed)
we have hook names

• ”block.<layer>.hook mlp in” we refer to using notation ms
t 2 Rd

• ”block.<layer>.hook attn out” and as
t 2 Rd

• ”block.<layer>.hook resid pre” and rs
t 2 Rd

• ”block.<layer>.hook resid post” and rs+1
t 2 Rd

A specific hookname name could be the MLP output in layer 3 (zero-indexed):
blocks.<layer>.hook mlp out which we denote m3

t 2 RT⇥d.

When the input token sequence x 2 V
T is made implicit we write ms

t(x) 2
Rd (respectively a and r), and when x is implicit we write ms

t . When we omit
the subscript t we are referring to the last token position ms = mT

s

Due to the residual structure and the parallelism in the models, we have the
relationship

rs+1
t (x) = rs

t(x) + as
t(x) + bs

t (x)

When we have a large set S of sequences of the same length, it eases the
presentation to think of the input token sequence as a random variable X 2
V

T, giving associated random variables Ms
t , As

t , Rs
t 2 Rd

69

Appendix B

Intuitions about High-Dimensional
Spaces and Feature Directions

In this section we will discuss some aspects of high-dimensional spaces
through simple simulations and reflect on the relevance for how neural
networks that operate on high-dimensional spaces might represent features
of the data. The main models we will study later has hidden dimension
d = 1024. However much larger models such as the open source model
Falcon-180B has d = 14848.

B.1 Concentration of measure

Fix a (random) vector a on a d-dimensional unit-sphere, consider then an-
other random vector x sampled uniformly on the unit-sphere 1. What is the
distribution over cosine similarity sim(a, x)? It depends on d. For example,
when d is very low such as 10 there is a decent probability that the similarity
is greater than 0.2 but when d = 1024 the probability that the similarity is
greater than 0.2 is vanishingly small. In Figure B.1 we plot histograms of sim-
ilarity when sampling a random a and 10K random xi recording sim(a, xi).

This extremely low chance of being outside an interval around 0 leads to the
idea of a pair of vectors being pseudo-orthogonal: In a high-dimensional
space, as long as the absolute cosine-similarity between two vectors is within
a decently small #, we can consider them pseudo-orthogonal or simply dis-
similar. On the other hand, if cosine-similarity is greater than #, we can
consider that this is not something that is very likely by chance and there-
fore consider them similar.

1One can efficiently sample uniformly from the unit-sphere by sampling from an
isotropic multivariate Gaussian and rescaling to unit norm

71

B. Intuitions about High-Dimensional Spaces and Feature Directions

(a) d = 10 (b) d = 1024

Figure B.1: Histogram showing the cosine-similarity between two randomly chosen vectors. In

high dimensional spaces two random vectors are very unlikely to have significant cosine-similarity.

This could form the basis of having very many vectors being almost-orthogonal.

Of the 10K random vectors how close is the closest one? If we let this be
the definition of # we can run simulations like the ones above, by sampling
n = 10K random vectors for different d. Of course, in the limit of sampling
N ! • vectors, # ! 1 so what we are concerned about it just having a
sufficiently low probability of similarity. In Figure B.2a we see how this
maximum decreases rapidly as d increases towards d = 2000 after which it
is very small and decreasing slower.

(a) As the dimensionality increases the highest

similarity observed among 10 thousand random

vectors decreases rapidly.

(b) As we increase the number of random vectors

in 1024 dimensional space the maximum similar-

ity between any pair grows quite slowly.

Figure B.2

72

B.2. Packing dissimilar vectors

B.2 Packing dissimilar vectors

In d dimensions it is possible to have d vectors that are all mutually orthog-
onal, for example the standard basis vectors. It is one thing to say that it
is unlikely for two random vectors to be similar, and another thing to talk
about how many vectors we can find that are all mutually dissimilar. If our
bound of similarity is sufficiently high, it turns out that it is a lot:

Consider again d = 1024 and now m randomly sampled vectors from the
unit sphere. We can compute the mutual cosine-similarities between all (m

2)
pairs of vectors and identify the greatest cosine-similarity. Conducting this
3 times for multiple versions of m we plot the result in Figure B.2b. For
example sampling 2K random vectors we find that there is a pair that has
cosine similarity 0.16 but all other pairs are are less similar.

The vertical line y = # = 0.12 denotes the threshold above which the m ran-
dom vectors are no longer mutually dissimilar in the sense that all mutual
cosine similarities are below # from the previous subsection. We notice that
this threshold is crossed very early, meaning that sampling randomly we get
a much worse outcome than choosing the standard basis.

However, we can also notice that the trend is for the maximum similarity
to grow only very slowly as m increases. Even for m = 10K the maximum
similarity is still less than 0.2

It is worth noting that originally we defined # as the threshold for similarity
based on the vector x that was most similar to a out 10K random xi. This
means that this threshold can be increased to #0 > # and it would only mean
that the probability of a random unit-norm vector X being similar to a is
lower

#0 > # =) P(sim(X, a) > #0) < P(sim(X, a) > #)

The maximum similarity plot above suggests that #0 = 0.18 is a reasonable
threshold for similarity when d = 1024.

Why do we care about m? In the context of deep learning, we are interested
in m because we can consider these m random directions as feature directions:
When #0 is the threshold, the d-dimensional can support a very high number
m > d of pseudo-orthogonal directions. Instead of having a vector space
where each dimension represents a one-dimensional feature and thus being
limited to d one-dimensional features, pseudo-orthogonality might allow for
representing a much larger number of one-dimensional features in a smaller
space.

73

B. Intuitions about High-Dimensional Spaces and Feature Directions

B.3 How many features can be bound in a vector?

In the fully-orthogonal case where each standard basis vector corresponds to
a feature direction, any vector u can encode the scalar value of its features in
its entries which can vary independently. If ei are the standard basis vectors
and ui is entry i of u, then

u = u1 · e1 + u2 · e2 + ... + ud · ed = Iu

Furthermore, the degree to which a feature ui is present in a vector u can be
determined by the dot product

ui = u · ei

and for cases where both u and basis vectors ei are unit vectors, this is
equivalent to the cosine similarity ui = sim(u, ei)

In the pseudo-orthogonal case where there are m > d feature directions
f1, ..., fm, this is not possible. If we maintain the idea of encoding feature
content by similarity, we can denote the amount zi of feature i 2 [m] encoded
in z by

zi = u · fi

we are less flexible, since changing u will change the similarity to many
different fj. We are less flexible, but how less flexible?

Consider the case where fi are random directions on the d-dimensional unit-
sphere. In the fully-orthogonal case, we might want a vector that encodes the
presence of feature u1, u2, u3 but absence of all other other features u3, ..., ud.
This would be done by having a vector such as u = (1, 1, 1, 0, ..., 0) = e1 +
e2 + e3.

In the pseudo-orthogonal case we might want a vector that encodes the
presence of features z1, z2, z3 but absence of all other features z4, ..., zm. One
attempt at doing this could be having a vector such as u = f1 + f2 + f3. In
it generalized form representing the presence of features z1, ..., zk is done by
u = Âk

j fj

The goal would be that u will be similar to f1, ..., fk but not similar to fk+1, ..., fm.
Does this work, and if so how large can k be before this no longer works?

In a simulation we now consider d = 1000 and consider various numbers of
present features k = 1, ..., 500. For each k we define a u = Âk

j f j and compute
the scores, zi = u · fi. We consider consider z1, ..., zk the ”first” and zk+1, ..., zm
the rest. We would want all firsts to be above #0, indicating similarity and
equivalently ”presence” of the feature, while we want to avoid that any of
the rest are significantly above #0 indicating dissimilarity.

74

B.3. How many features can be bound in a vector?

What we find is that it is that already at a low value of k , there will a f j for
j > k and a fi for i k where sim(u, f j) > sim(u, fi). This is at the point
where the blue and the orange line crosses. At this point, if we try to let
u represent the presence of k features as a linear combination we will also
start having false postives, where u is understood to represent the presence
features that we did not intend.

(a) We can try to understand how many ran-

dom feature directions a vector can be similar to

at the same time while being non-similar to the

other feature directions.

Figure B.3

This suggests that if we have data that has a certain property, that in a
data point, only a limited number of features are present at the same time,
then using pseudo-orthogonality has its uses, but on the other hand pseudo-
orthogonality is very limited in its ability to allow *all* features to vary freely.
Within the smaller number of features we can vary freely.

75

Appendix C

Reproducibility

• Code and data is available at https://github.com/kmrasmussen/pythia_
tools/tree/main/superposition

• Experiments were conducted on Google Colab using a T4 GPU with 15
GB VRAM and 50 GB CPU RAM which currently consumes 2 Google
Colab compute units per hour. https://colab.research.google.

com/. Though the exact amount of GPU compute has not been tracked,
we estimate it to be at most 600 units. Using a calculator that esti-
mates CO2 consumption mlco2.github.io/impact we estimate this to
be below 30 kg CO2 eq. (depending on the geographical location of
the servers). According to the calculator Google Colab uses full carbon
offsetting.

• The primary Transformer language model used is Pythia-410m https:

//huggingface.co/EleutherAI/pythia-410m, specifically the version
EleutherAI/pythia-410m-deduped-v0 which is also available as part
of TransformerLens [34] https://github.com/neelnanda-io/TransformerLens

• The data used for experiment is from The Pile-v1 https://pile.eleuther.ai/.
At the time of the experiments, The Pile was not available from the web-
site and the data for T322K was downloaded from https://academictorrents.

com/details/0d366035664fdf51cfbe9f733953ba325776e667m. The Pile
Validation from which T77K and T10K was downloaded from https:

//pile.eleuther.ai/ when it was available.

77

https://github.com/kmrasmussen/pythia_tools/tree/main/superposition
https://github.com/kmrasmussen/pythia_tools/tree/main/superposition
https://colab.research.google.com/
https://colab.research.google.com/
mlco2.github.io/impact
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://github.com/neelnanda-io/TransformerLens
https://academictorrents.com/details/0d366035664fdf51cfbe9f733953ba325776e667m
https://academictorrents.com/details/0d366035664fdf51cfbe9f733953ba325776e667m
https://pile.eleuther.ai/
https://pile.eleuther.ai/

Appendix D

Note on Relation to Project
Description

The original title of the project was ”Understanding features in superposi-
tion in GPT feed-forward layers” and emphasized the MLP modules. Even
at the stage of the project description, it was clear that there were some am-
biguities regarding how to think about superposition in the residual stream
and the MLP spaces. The work shifted its focus to the residual stream for
the following reasons:

• MLP activation spaces are generally four times as large as the residual
stream, and studying superposition in these spaces using the approach
we considered would require many more features and more computa-
tional resources.

• Since the usage of features is arguably an important aspect of superpo-
sition, we considered superposition in the residual stream to be more
important, as it is more natural to think of modules as utilizing fea-
tures represented in the residual stream.

• The project description proposed that the relationship between MLPs
and superposition might be viewed from the perspective that MLPs
use features in the residual stream. Therefore, the work aimed to es-
tablish features in the residual stream to better understand how MLPs
might use such features. However, apart from some parts of Section
4.3, this has not been the primary focus as intended.

• One idea was that, following [25], one could attempt to understand
early MLPs in relation to bigrams. However, it was found that even
in the residual stream at depth s = 1, many probes for bigrams per-
formed well. Therefore, the work shifted its focus to understanding
this aspect.

79

D. Note on Relation to Project Description

• Some work was done with the intention of better understanding the
causal influence of MLPs, but this work remains unfinished and has
not been included in the thesis.

Despite the original intended focus on MLPs, the most important motiva-
tion was the general idea of studying superposition in realistic Transformer
language models. The methods and experiments conducted should apply to
MLPs, assuming sufficient resources to conduct the experiments in higher
spaces which which requires more data and more compute and time for
training and storage in cases probing data sets are cached.

80

Bibliography

[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate lay-
ers using linear classifier probes. ArXiv, abs/1610.01644, 2016.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normal-
ization. arXiv preprint arXiv:1607.06450, 2016.

[3] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and ad-
vances. Computational Linguistics, 48(1):207–219, March 2022.

[4] Nora Belrose. Cohere for ai - community talks - on concept erasure
and elicit latent knowledge. YouTube, 2023. Available: https://www.

youtube.com/watch?v=y6Z8CYZz1eo.

[5] Nora Belrose et al. Eliciting latent predictions from transformers with
the tuned lens. arXiv preprint arXiv:2303.08112, 2023.

[6] Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell,
Edward Raff, and Stella Biderman. Leace: Perfect linear concept erasure
in closed form, 2023.

[7] Stella Rose Biderman, Hailey Schoelkopf, Quentin G. Anthony, Herbie
Bradley, Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shiv-
anshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for an-
alyzing large language models across training and scaling. ArXiv,
abs/2304.01373, 2023.

[8] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo
Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and
William Saunders. Language models can explain neurons in
language models. https://openaipublic.blob.core.windows.net/

neuron-explainer/paper/index.html, 2023.

81

https://www.youtube.com/watch?v=y6Z8CYZz1eo
https://www.youtube.com/watch?v=y6Z8CYZz1eo
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

Bibliography

[9] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif,
Fernanda Vi’egas, and Martin Wattenberg. An interpretability illusion
for bert. ArXiv, abs/2104.07143, 2021.

[10] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam
Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison,
Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan
Hume, Shan Carter, Tom Henighan, and Christopher Olah. To-
wards monosemanticity: Decomposing language models with dictio-
nary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners.
CoRR, abs/2005.14165, 2020.

[12] Rosa Cao. Putting representations to use. Synthese, 200(2), 2022.

[13] Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing
transformers in embedding space. ArXiv, abs/2209.02535, 2022.

[14] Alexander Yom Din et al. Jump to conclusions: Short-cutting transform-
ers with linear transformations. arXiv preprint arXiv:2303.09435, 2023.

[15] Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom
Henighan, Scott Johnston, Sheer ElShowk, Nicholas Joseph, Nova
DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Kamal
Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep
Ganguli, Liane Lovitt, Zac Hatfield-Dodds, Jackson Kernion, Tom
Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath, Josh Jacob-
son, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam
McCandlish, Dario Amodei, and Christopher Olah. Softmax lin-
ear units. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/solu/index.html.

[16] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer,
Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby,

82

Bibliography

Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/toymodel/index.html.

[17] Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged bases
in the transformer residual stream. Anthropic, Mar 2023. Core Research
Contributor: Nelson Elhage; Correspondence to: Christopher Olah (co-
lah@anthropic.com).

[18] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas
Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. A mathematical framework for trans-
former circuits. Transformer Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

[19] Leo Gao, Stella Rose Biderman, Sid Black, Laurence Golding, Travis Hoppe,
Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,
Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse
text for language modeling. ArXiv, abs/2101.00027, 2020.

[20] Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas F. Icard, and
Noah D. Goodman. Finding alignments between interpretable causal vari-
ables and distributed neural representations. ArXiv, abs/2303.02536, 2023.

[21] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer
feed-forward layers build predictions by promoting concepts in the vocabu-
lary space. arXiv preprint arXiv:2203.14680, 3 2022. Cited by 58.

[22] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer
feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913,
12 2020.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[24] Clément Guerner, Anej Svete, Tianyu Liu, Alexander Warstadt, and
Ryan Cotterell. A geometric notion of causal probing. arXiv preprint
arXiv:2307.15054, 2023.

[25] Wes Gurnee et al. Finding neurons in a haystack: Case studies with sparse
probing. arXiv preprint arXiv:2305.01610, 2023.

83

Bibliography

[26] Jacqueline Harding. Operationalising representation in natural language
processing. British Journal for the Philosophy of Science, forthcoming.

[27] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

[28] Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and
Christopher Potts. Rigorously assessing natural language explanations of
neurons. arXiv preprint arXiv:2309.10312, 9 2023.

[29] et al. Ilyas, Andrew. Adversarial examples are not bugs, they are features.
In Advances in neural information processing systems 32, 2019.

[30] Pentti Kanerva. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive Computation, 1(2):139–159, 2009.

[31] Tom McGrath, Matthew Rahtz, János Kramár, Vladimir Mikulik, and Shane
Legg. The hydra effect: Emergent self-repair in language model computa-
tions. ArXiv, abs/2307.15771, 2023.

[32] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating
and editing factual associations in gpt. In Neural Information Processing Sys-
tems, 2022.

[33] Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantiza-
tion model of neural scaling. ArXiv, abs/2303.13506, 2023.

[34] Neel Nanda and Joseph Bloom. Transformerlens, 2022.

[35] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. Zoom in: An introduction to circuits. Distill, 2020.
https://distill.pub/2020/circuits/zoom-in.

[36] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[37] Charles Sanders Peirce. Prolegomena to an apology for pragmaticism.
Monist, 16:492–546, 1906.

[38] Mary Phuong and Marcus Hutter. Formal algorithms for transformers.
ArXiv, abs/2207.09238, 2022.

[39] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI Blog, 2019. https://d4mucfpksywv.cloudfront.net/better-language-
models/language-models.pdf.

84

Bibliography

[40] Shauli Ravfogel, Yoav Goldberg, and Ryan Cotterell. Linear guardedness
and its implications. arXiv preprint arXiv:2210.10012, 10 2022.

[41] Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Lin-
ear adversarial concept erasure. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pages 18400–18421. PMLR, 17–23 Jul
2022.

[42] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. ArXiv, abs/2104.09864,
2021.

[43] Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel. Classification
of imbalanced data: A review. International Journal of Pattern Recognition and
Artificial Intelligence, 23(04):687–719, 2009.

[44] Curt Tigges et al. Linear representations of sentiment in large language
models. arXiv preprint arXiv:2310.15154, 2023.

[45] Alex Turner et al. Activation addition: Steering language models without
optimization. arXiv preprint arXiv:2308.10248, 2023.

[46] Zhengxuan Wu, Atticus Geiger, Christopher Potts, and Noah D. Goodman.
Interpretability at scale: Identifying causal mechanisms in alpaca. ArXiv,
abs/2305.08809, 2023.

[47] Yilun Xu et al. A theory of usable information under computational con-
straints. arXiv preprint arXiv:2002.10689, 2020.

[48] Andy Zou et al. Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023.

85

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Kasper Rasmussen
UNDERSTANDING FEATURES IN SUPERPOSITION IN TRANSFORMER LANGUAGE MODELS

Kasper Rasmussen
KASPER

Kasper Rasmussen
RASMUSSEN

Kasper Rasmussen
ZURICH, NOVEMBER 13, 2023

	Contents
	Introduction
	Feature Types and Data
	Defining Feature Types
	A Bigram Feature Type Set
	The Pile
	Feature Frequency

	Probing Data Sets for Bigram Feature Types
	The Problem of Probing Data Sets

	Feature Accessibility
	Defining Feature Accessibility
	The Problem of Positional Binding

	Experiment
	Hypothesis
	Method
	Results and Takeaways
	Further Analysis

	The Distribution of Feature Directions and Interference
	Isotropy of Feature Directions
	Feature Dimensionality
	Determinants of Feature Dimensionality
	Feature Dimensionality of Bigram Feature Vectors
	Bigram Feature Importance
	Hypothesis
	Method
	Result

	Feature Usage
	Methods
	V-information and Least Squares Concept Erasure
	Causal Interventions

	Effect of Addition Interventions on Model Output
	Method
	Hypothesis
	Experiment setup
	Results and Discussion

	Effect of Erasure on Downstream Accessibility
	Method
	Hypothesis
	Experiment Setup
	Results and Further Analysis

	Effect of Directional Activation Intervention on Preliminary Probabilities
	Method
	Hypothesis
	Results and Discussion

	Effect of Erasure on General Model Performance
	Conceptual Considerations
	Experiment Setup
	Results

	Chapter Appendix: Defining the Validation Performance of a Fitted LEACE Eraser
	Validation Performance as a Function of Training Set Size

	Discussion and Conclusion
	GPT architecture
	Embedding layer
	Residual streams
	Transformer block
	LayerNorm
	Multi-head Self Attention
	Multi-Layer Perceptron
	Unembedding Layer
	Hook Names

	Intuitions about High-Dimensional Spaces and Feature Directions
	Concentration of measure
	Packing dissimilar vectors
	How many features can be bound in a vector?

	Reproducibility
	Note on Relation to Project Description
	Bibliography

